scholarly journals Numerical evaluation of stress intensity factors and T-stress for interfacial cracks and cracks terminating at the interface without asymptotic enrichment

2014 ◽  
Vol 279 ◽  
pp. 86-112 ◽  
Author(s):  
Sundararajan Natarajan ◽  
Chongmin Song ◽  
Salim Belouettar
2016 ◽  
Vol 18 ◽  
pp. 52-57
Author(s):  
Lahouari Fodil ◽  
Abdallah El Azzizi ◽  
Mohammed Hadj Meliani

A failure criterion is proposed for ductile fracture in U-notched components under mixed mode static loading. The Compact Tension Shear (CTS) is the preferred test specimen used to determine stress intensity factor in the mode I, mode II and the mixed-mode fracture. In this work, the mode I and mode II stress intensity factors were computed for different notch ratio lengths 0.1<a/W<0.7, of the inner radius of notch 0.25mm<ρ<4mm and load orientation angles 0°<α< 90° using finite element analysis. However, a review of numerical analysis results reveals that the conventional fracture criteria with only stress intensity factors (NSIFs) Kρ first term of Williams’s solution provide different description of stress field around notch zone comparing with results introduce the second and third parameter T-stress and A3.


2014 ◽  
Vol 81 (8) ◽  
Author(s):  
Hyung Jip Choi

The impact response of bonded media with a functionally graded interlayer weakened by a pair of two offset interfacial cracks is investigated under the condition of antiplane deformation. The material nonhomogeneity in the graded interlayer is represented in terms of power-law variations of shear modulus and mass density between the dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the crack problem to solving a system of Cauchy-type singular integral equations in the Laplace domain. The crack-tip behavior in the physical domain is recovered through the inverse Laplace transform to evaluate the dynamic mode III stress intensity factors as a function of time. As a result, the transient interaction of the offset interfacial cracks spaced apart by the graded interlayer is illustrated. The peak values of the dynamic stress intensity factors are also presented versus offset crack distance, elaborating the effects of various material and geometric parameters of the bonded system on the overshoot characteristics of the transient behavior in the near-tip regions, owing to the impact-induced interaction of singular stress fields between the two cracks.


Sign in / Sign up

Export Citation Format

Share Document