scholarly journals Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment

2020 ◽  
Vol 196 ◽  
pp. 105664 ◽  
Author(s):  
Gustavo Barbosa Libotte ◽  
Fran Sérgio Lobato ◽  
Gustavo Mendes Platt ◽  
Antônio J. Silva Neto
1974 ◽  
Vol 9 (1) ◽  
pp. 217-234 ◽  
Author(s):  
W. Bell ◽  
G. Johnson ◽  
C. B. Winn

Abstract This paper presents a method for determining an optimal control strategy for the real time control of flow in combined sewer systems. The objective of this control is to minimize weighted flow diversions from the sewer system to the receiving waters during storm periods. The elements of a control system for combined sewers are described first. This is followed by a development of a reservoir model for combined sewer systems having weir and orifice controls at the regulator structures. An example, verified by the variational calculus, is given of an optimal control strategy that will minimize the weighted overflows from a system of three reservoirs. Examination of this optimal strategy and others presented in the literature shows that the optimal control strategy for this type of problem typically falls on constraint boundaries and includes jumps in the orifice controls from maximum to minimum positions. By formulating these common operating procedures into a set of rules it is shown that if the times at which the jumps in the orifice controls occur are known, then for a given set of inflow hydrographs the control strategy is completely defined. The determination of an optimal control is then reduced to finding the optimal times for the jumps in the orifice controls to occur. A procedure for this optimization is outlined and the results of its application to a system of ten reservoirs are presented. It is concluded that the method presented for the determination of an optimal control logic would be suitable for a system containing up to twenty control points and would ensure maximum utilization of available system storage capacity.


2014 ◽  
Author(s):  
Thomas A. Wettergren ◽  
David B. Segala ◽  
David Chelidze

2012 ◽  
Vol 38 (6) ◽  
pp. 1017 ◽  
Author(s):  
Jia-Yan ZHANG ◽  
Zhong-Hai MA ◽  
Xiao-Bin QIAN ◽  
Shao-Ming LI ◽  
Jia-Hong LANG

2021 ◽  
Vol 145 ◽  
pp. 110789
Author(s):  
Parthasakha Das ◽  
Samhita Das ◽  
Pritha Das ◽  
Fathalla A. Rihan ◽  
Muhammet Uzuntarla ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 271
Author(s):  
Yusung Lee ◽  
Woohyun Kim

In this study, an optimal control strategy for the variable refrigerant flow (VRF) system is developed using a data-driven model and on-site data to save the building energy. Three data-based models are developed to improve the on-site applicability. The presented models are used to determine the length of time required to bring each zone from its current temperature to the set point. The existing data are used to evaluate and validated the predictive performance of three data-based models. Experiments are conducted using three outdoor units and eight indoor units on site. The experimental test is performed to validate the performance of proposed optimal control by comparing between conventional and optimal control methods. Then, the ability to save energy wasted for maintaining temperature after temperature reaches the set points is evaluated through the comparison of energy usage. Given these results, 30.5% of energy is saved on average for each outdoor unit and the proposed optimal control strategy makes the zones comfortable.


Sign in / Sign up

Export Citation Format

Share Document