Some notes on the general boundary element method for highly nonlinear problems

2005 ◽  
Vol 10 (7) ◽  
pp. 725-735 ◽  
Author(s):  
Y.Y. Wu ◽  
S.J. Liao ◽  
X.Y. Zhao
Author(s):  
Keijo Ruotsalainen

AbstractRecently in several papers the boundary element method has been applied to non-linear problems. In this paper we extend the analysis to strongly nonlinear boundary value problems. We shall prove the convergence and the stability of the Galerkin method in Lp spaces. Optimal order error estimates in Lp space then follow. We use the theory of A-proper mappings and monotone operators to prove convergence of the method. We note that the analysis includes the u4 -nonlinearity, which is encountered in heat radiation problems.


Author(s):  
Caroline H. Hague ◽  
Chris Swan

This paper concerns the description of extreme surface water waves in deep water. A fully nonlinear numerical wave model in three dimensions is presented, based on the Boundary Element Method (BEM), and is applied to nonlinear focusing of wave components with varying frequency and direction of propagation to form highly nonlinear groups. By using multiple fluxes at corners and edges of the numerical domain the “corner problem” associated with BEM-based models in physical space is overcome. A two-dimensional version of the method is also employed to model unidirectional cases, and examples presented include the focusing of Top Hat spectra in deep water to form highly nonlinear wave groups at or close to their breaking limit. The ability of the model to accurately simulate these sea states is highlighted by comparison to the fully nonlinear model of Bateman, Swan and Taylor (2001, 2003).


Sign in / Sign up

Export Citation Format

Share Document