Convergence results for a class of multivalued variational–hemivariational inequality

Author(s):  
Dong-ling Cai ◽  
Yi-bin Xiao
2007 ◽  
Vol 7 (1) ◽  
pp. 68-82
Author(s):  
K. Kropielnicka

AbstractA general class of implicit difference methods for nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type is constructed. Convergence results are proved by means of consistency and stability arguments. It is assumed that given functions satisfy nonlinear estimates of Perron type with respect to functional variables. Differential equations with deviated variables and differential integral problems can be obtained from a general model by specializing given operators. The results are illustrated by numerical examples.


2017 ◽  
Vol 27 (6) ◽  
pp. 1249-1265 ◽  
Author(s):  
Yijun Liu ◽  
Guiyong Zhang ◽  
Huan Lu ◽  
Zhi Zong

Purpose Due to the strong reliance on element quality, there exist some inherent shortcomings of the traditional finite element method (FEM). The model of FEM behaves overly stiff, and the solutions of automated generated linear elements are generally of poor accuracy about especially gradient results. The proposed cell-based smoothed point interpolation method (CS-PIM) aims to improve the results accuracy of the thermoelastic problems via properly softening the overly-stiff stiffness. Design/methodology/approach This novel approach is based on the newly developed G space and weakened weak (w2) formulation, and of which shape functions are created using the point interpolation method and the cell-based gradient smoothing operation is conducted based on the linear triangular background cells. Findings Owing to the property of softened stiffness, the present method can generally achieve better accuracy and higher convergence results (especially for the temperature gradient and thermal stress solutions) than the FEM does by using the simplest linear triangular background cells, which has been examined by extensive numerical studies. Practical implications The CS-PIM is capable of producing more accurate results of temperature gradients as well as thermal stresses with the automated generated and unstructured background cells, which make it a better candidate for solving practical thermoelastic problems. Originality/value It is the first time that the novel CS-PIM was further developed for solving thermoelastic problems, which shows its tremendous potential for practical implications.


2021 ◽  
Vol 9 (1) ◽  
pp. 172-189
Author(s):  
David Benkeser ◽  
Jialu Ran

Abstract Understanding the pathways whereby an intervention has an effect on an outcome is a common scientific goal. A rich body of literature provides various decompositions of the total intervention effect into pathway-specific effects. Interventional direct and indirect effects provide one such decomposition. Existing estimators of these effects are based on parametric models with confidence interval estimation facilitated via the nonparametric bootstrap. We provide theory that allows for more flexible, possibly machine learning-based, estimation techniques to be considered. In particular, we establish weak convergence results that facilitate the construction of closed-form confidence intervals and hypothesis tests and prove multiple robustness properties of the proposed estimators. Simulations show that inference based on large-sample theory has adequate small-sample performance. Our work thus provides a means of leveraging modern statistical learning techniques in estimation of interventional mediation effects.


Author(s):  
Stefano Almi ◽  
Marco Morandotti ◽  
Francesco Solombrino

AbstractA multi-step Lagrangian scheme at discrete times is proposed for the approximation of a nonlinear continuity equation arising as a mean-field limit of spatially inhomogeneous evolutionary games, describing the evolution of a system of spatially distributed agents with strategies, or labels, whose payoff depends also on the current position of the agents. The scheme is Lagrangian, as it traces the evolution of position and labels along characteristics, and is a multi-step scheme, as it develops on the following two stages: First, the distribution of strategies or labels is updated according to a best performance criterion, and then, this is used by the agents to evolve their position. A general convergence result is provided in the space of probability measures. In the special cases of replicator-type systems and reversible Markov chains, variants of the scheme, where the explicit step in the evolution of the labels is replaced by an implicit one, are also considered and convergence results are provided.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Shuanghua Luo ◽  
Angang Cui ◽  
Cheng-yi Zhang

Abstract The paper studies two splitting forms of generalized saddle point matrix to derive two alternate direction iterative schemes for generalized saddle point systems. Some convergence results are established for these two alternate direction iterative methods. Meanwhile, a numerical example is given to show that the proposed alternate direction iterative methods are much more effective and efficient than the existing one.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Jankuhn ◽  
Maxim A. Olshanskii ◽  
Arnold Reusken ◽  
Alexander Zhiliakov

AbstractThe paper studies a higher order unfitted finite element method for the Stokes system posed on a surface in ℝ3. The method employs parametric Pk-Pk−1 finite element pairs on tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal order convergence results are proved. The proofs include a complete quantification of geometric errors stemming from approximate parametric representation of the surface. Numerical experiments include formal convergence studies and an example of the Kelvin--Helmholtz instability problem on the unit sphere.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1235
Author(s):  
Bianca Ioana Vasian ◽  
Ștefan Lucian Garoiu ◽  
Cristina Maria Păcurar

The present paper introduces new classes of Stancu–Kantorovich operators constructed in the King sense. For these classes of operators, we establish some convergence results, error estimations theorems and graphical properties of approximation for the classes considered, namely, operators that preserve the test functions e0(x)=1 and e1(x)=x, e0(x)=1 and e2(x)=x2, as well as e1(x)=x and e2(x)=x2. The class of operators that preserve the test functions e1(x)=x and e2(x)=x2 is a genuine generalization of the class introduced by Indrea et al. in their paper “A New Class of Kantorovich-Type Operators”, published in Constr. Math. Anal.


Sign in / Sign up

Export Citation Format

Share Document