Extracting independent and identically distributed samples from time series significant wave heights in the Yellow Sea

2020 ◽  
Vol 158 ◽  
pp. 103693 ◽  
Author(s):  
Zhuxiao Shao ◽  
Bingchen Liang ◽  
Huijun Gao
2020 ◽  
Vol 8 (4) ◽  
pp. 236 ◽  
Author(s):  
Huijun Gao ◽  
Zhuxiao Shao ◽  
Guoxiang Wu ◽  
Ping Li

The study of extreme waves is important for the protection of coastal and ocean structures. In this work, a 22-year (1990–2011) wave hindcast in the Yellow Sea is employed to perform the assessment of extreme significant wave heights in this area. To extract the independent sample from this database, the fixed window method is used, which takes the peak significant wave height within five d. With the selected samples, directional declustering is studied to extract the homogenous sample. The results show that most of the independent samples (especially large samples) are observed in the North. In this direction, the peak over threshold (POT) method is used to extract the extreme sample from the homogenous sample, and then the generalized Pareto distribution model is used to extrapolate the extreme significant wave height. In addition to this combination, the annual maxima method with the Gumbel model is also used for estimating extreme values. The comparisons show that the return significant wave heights of the first combination are reliable, resulting from a flexible sampling window in the POT method. With this conclusion, the extreme significant wave height is extrapolated from the Yellow Sea, which can be used to protect the structure in the main directional bin.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2817
Author(s):  
Pushpa Dissanayake ◽  
Teresa Flock ◽  
Johanna Meier ◽  
Philipp Sibbertsen

The peaks-over-threshold (POT) method has a long tradition in modelling extremes in environmental variables. However, it has originally been introduced under the assumption of independently and identically distributed (iid) data. Since environmental data often exhibits a time series structure, this assumption is likely to be violated due to short- and long-term dependencies in practical settings, leading to clustering of high-threshold exceedances. In this paper, we first review popular approaches that either focus on modelling short- or long-range dynamics explicitly. In particular, we consider conditional POT variants and the Mittag–Leffler distribution modelling waiting times between exceedances. Further, we propose a new two-step approach capturing both short- and long-range correlations simultaneously. We suggest the autoregressive fractionally integrated moving average peaks-over-threshold (ARFIMA-POT) approach, which in a first step fits an ARFIMA model to the original series and then in a second step utilises a classical POT model for the residuals. Applying these models to an oceanographic time series of significant wave heights measured on the Sefton coast (UK), we find that neither solely modelling short- nor long-range dependencies satisfactorily explains the clustering of extremes. The ARFIMA-POT approach, however, provides a significant improvement in terms of model fit, underlining the need for models that jointly incorporate short- and long-range dependence to address extremal clustering, and their theoretical justification.


Author(s):  
N. A. Rohana ◽  
N. Yusof ◽  
M. N. Uti ◽  
A. H. M. Din

Abstract. The sea waves are the up and down movements of water in the sea. The various heights of sea waves are known as significant wave heights. Each type of wave has their own characteristics based on their significant wave heights. The aim of this research is to explore spatio-temporal wave patterns and their effects on Tok Jembal coastal areas. For this study, the monthly wave data were obtained from the satellite altimeters that have been processed using Radar Altimeter Database System (RADS). The Self Organizing Map (SOM) method was used to extract the spatio-temporal wave height patterns from the monthly wave height data. From the clustering results, six number of clusters were extracted and then each of these clusters was categorized into specific type of wave heights. In addition, time series of Landsat satellite images were used to observe the coastal changes at Tok Jembal areas. Finally, we analyzed the effects of spatio-temporal wave patterns towards the occurrences of coastal erosion along the coastal areas. This study has discovered that the wave heights along the coastal areas fall in slight category and showed less effects on the erosion. From the visual interpretation of time- series images (10 years gap) also proved that the erosion can be considered as moderate. Overall, this study could benefit the coastal management especially for shoreline monitoring where early action can be taken when there are signs of erosion along the coast.


Sign in / Sign up

Export Citation Format

Share Document