scholarly journals Causal inference in environmental sound recognition

Cognition ◽  
2021 ◽  
Vol 214 ◽  
pp. 104627
Author(s):  
James Traer ◽  
Sam V. Norman-Haignere ◽  
Josh H. McDermott
2021 ◽  
Author(s):  
Wenjun Yang

This thesis explores features characterizing the temporal dynamics and the use of ensemble techniques to improve the performances of environmental sound recognition (ESR) system. Firstly, for acoustic scene classification (ASC), local binary pattern (LBP) technique is applied to extract the temporal evolution of Mel-frequency cepstral coefficients (MFCC) features, and the D3C ensemble classifier is adopted to optimize the system performance. The results show that the proposed method achieved a classification improvement of 8% compared to the baseline system. Secondly, a new approach for sound event detection (SED) using Nonnegative Matrix Factor 2- D Deconvolution (NMF2D) and RUSBoost techniques is presented. The idea is to capture the two dimensional joint spectral and temporal information from the time-frequency representation (TFR) while possibly separating the sound mixture into several sources. Besides, the RUSBoost ensemble technique is utilized in the event detection process to alleviate class imbalance in the training data. This method reduced the total error rate by 5% compared to the baseline method.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2622
Author(s):  
Jurgen Vandendriessche ◽  
Nick Wouters ◽  
Bruno da Silva ◽  
Mimoun Lamrini ◽  
Mohamed Yassin Chkouri ◽  
...  

In recent years, Environmental Sound Recognition (ESR) has become a relevant capability for urban monitoring applications. The techniques for automated sound recognition often rely on machine learning approaches, which have increased in complexity in order to achieve higher accuracy. Nonetheless, such machine learning techniques often have to be deployed on resource and power-constrained embedded devices, which has become a challenge with the adoption of deep learning approaches based on Convolutional Neural Networks (CNNs). Field-Programmable Gate Arrays (FPGAs) are power efficient and highly suitable for computationally intensive algorithms like CNNs. By fully exploiting their parallel nature, they have the potential to accelerate the inference time as compared to other embedded devices. Similarly, dedicated architectures to accelerate Artificial Intelligence (AI) such as Tensor Processing Units (TPUs) promise to deliver high accuracy while achieving high performance. In this work, we evaluate existing tool flows to deploy CNN models on FPGAs as well as on TPU platforms. We propose and adjust several CNN-based sound classifiers to be embedded on such hardware accelerators. The results demonstrate the maturity of the existing tools and how FPGAs can be exploited to outperform TPUs.


2008 ◽  
Vol 5 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Jia-Ching Wang ◽  
Hsiao-Ping Lee ◽  
Jhing-Fa Wang ◽  
Cai-Bei Lin

Sign in / Sign up

Export Citation Format

Share Document