scholarly journals Environmental Sound Recognition on Embedded Systems: From FPGAs to TPUs

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2622
Author(s):  
Jurgen Vandendriessche ◽  
Nick Wouters ◽  
Bruno da Silva ◽  
Mimoun Lamrini ◽  
Mohamed Yassin Chkouri ◽  
...  

In recent years, Environmental Sound Recognition (ESR) has become a relevant capability for urban monitoring applications. The techniques for automated sound recognition often rely on machine learning approaches, which have increased in complexity in order to achieve higher accuracy. Nonetheless, such machine learning techniques often have to be deployed on resource and power-constrained embedded devices, which has become a challenge with the adoption of deep learning approaches based on Convolutional Neural Networks (CNNs). Field-Programmable Gate Arrays (FPGAs) are power efficient and highly suitable for computationally intensive algorithms like CNNs. By fully exploiting their parallel nature, they have the potential to accelerate the inference time as compared to other embedded devices. Similarly, dedicated architectures to accelerate Artificial Intelligence (AI) such as Tensor Processing Units (TPUs) promise to deliver high accuracy while achieving high performance. In this work, we evaluate existing tool flows to deploy CNN models on FPGAs as well as on TPU platforms. We propose and adjust several CNN-based sound classifiers to be embedded on such hardware accelerators. The results demonstrate the maturity of the existing tools and how FPGAs can be exploited to outperform TPUs.

2021 ◽  
Vol 11 (18) ◽  
pp. 8394
Author(s):  
Lancelot Lhoest ◽  
Mimoun Lamrini ◽  
Jurgen Vandendriessche ◽  
Nick Wouters ◽  
Bruno da Silva ◽  
...  

Environmental Sound Recognition has become a relevant application for smart cities. Such an application, however, demands the use of trained machine learning classifiers in order to categorize a limited set of audio categories. Although classical machine learning solutions have been proposed in the past, most of the latest solutions that have been proposed toward automated and accurate sound classification are based on a deep learning approach. Deep learning models tend to be large, which can be problematic when considering that sound classifiers often have to be embedded in resource constrained devices. In this paper, a classical machine learning based classifier called MosAIc, and a lighter Convolutional Neural Network model for environmental sound recognition, are proposed to directly compete in terms of accuracy with the latest deep learning solutions. Both approaches are evaluated in an embedded system in order to identify the key parameters when placing such applications on constrained devices. The experimental results show that classical machine learning classifiers can be combined to achieve similar results to deep learning models, and even outperform them in accuracy. The cost, however, is a larger classification time.


Author(s):  
Kritika Malhotra ◽  
Amit Prakash Singh

<span id="docs-internal-guid-01e673b1-7fff-8dc3-6b99-14ed17cd6b49"><span>Machine learning techniques are rapidly emerging in large number of fields from robotics to computer vision to finance and biology. One important step of machine learning is classification which is the process of finding out to which category a new encountered observation belongs based on predefined categories. There are various existing solutions to classification and one of them is decision tree classification (DTC) which can achieve high accuracy while handling the large datasets. But DTC is computationally intensive algorithm and as the size of the dataset increases its running time also increases which could be from some hours to days even. But thanks to field programmable gate arrays (FPGA) which could be used for large datasets to achieve high performance implementation with low energy consumption. Along with FPGA’s, python is used for accelerating the application development and python is leveraged by using python productivity for zynq (PYNQ), a python development environment for application development. This paper provides the literature review of an implementation of DTC for FPGA devices along with future work that can be done.</span></span>


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2717
Author(s):  
Nusrat Rouf ◽  
Majid Bashir Malik ◽  
Tasleem Arif ◽  
Sparsh Sharma ◽  
Saurabh Singh ◽  
...  

With the advent of technological marvels like global digitization, the prediction of the stock market has entered a technologically advanced era, revamping the old model of trading. With the ceaseless increase in market capitalization, stock trading has become a center of investment for many financial investors. Many analysts and researchers have developed tools and techniques that predict stock price movements and help investors in proper decision-making. Advanced trading models enable researchers to predict the market using non-traditional textual data from social platforms. The application of advanced machine learning approaches such as text data analytics and ensemble methods have greatly increased the prediction accuracies. Meanwhile, the analysis and prediction of stock markets continue to be one of the most challenging research areas due to dynamic, erratic, and chaotic data. This study explains the systematics of machine learning-based approaches for stock market prediction based on the deployment of a generic framework. Findings from the last decade (2011–2021) were critically analyzed, having been retrieved from online digital libraries and databases like ACM digital library and Scopus. Furthermore, an extensive comparative analysis was carried out to identify the direction of significance. The study would be helpful for emerging researchers to understand the basics and advancements of this emerging area, and thus carry-on further research in promising directions.


Computers ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 157
Author(s):  
Daniel Santos ◽  
José Saias ◽  
Paulo Quaresma ◽  
Vítor Beires Nogueira

Traffic accidents are one of the most important concerns of the world, since they result in numerous casualties, injuries, and fatalities each year, as well as significant economic losses. There are many factors that are responsible for causing road accidents. If these factors can be better understood and predicted, it might be possible to take measures to mitigate the damages and its severity. The purpose of this work is to identify these factors using accident data from 2016 to 2019 from the district of Setúbal, Portugal. This work aims at developing models that can select a set of influential factors that may be used to classify the severity of an accident, supporting an analysis on the accident data. In addition, this study also proposes a predictive model for future road accidents based on past data. Various machine learning approaches are used to create these models. Supervised machine learning methods such as decision trees (DT), random forests (RF), logistic regression (LR), and naive Bayes (NB) are used, as well as unsupervised machine learning techniques including DBSCAN and hierarchical clustering. Results show that a rule-based model using the C5.0 algorithm is capable of accurately detecting the most relevant factors describing a road accident severity. Further, the results of the predictive model suggests the RF model could be a useful tool for forecasting accident hotspots.


Predictive modelling is a mathematical technique which uses Statistics for prediction, due to the rapid growth of data over the cloud system, data mining plays a significant role. Here, the term data mining is a way of extracting knowledge from huge data sources where it’s increasing the attention in the field of medical application. Specifically, to analyse and extract the knowledge from both known and unknown patterns for effective medical diagnosis, treatment, management, prognosis, monitoring and screening process. But the historical medical data might include noisy, missing, inconsistent, imbalanced and high dimensional data.. This kind of data inconvenience lead to severe bias in predictive modelling and decreased the data mining approach performances. The various pre-processing and machine learning methods and models such as Supervised Learning, Unsupervised Learning and Reinforcement Learning in recent literature has been proposed. Hence the present research focuses on review and analyses the various model, algorithm and machine learning technique for clinical predictive modelling to obtain high performance results from numerous medical data which relates to the patients of multiple diseases.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6743
Author(s):  
Vasiliki Kelli ◽  
Vasileios Argyriou ◽  
Thomas Lagkas ◽  
George Fragulis ◽  
Elisavet Grigoriou ◽  
...  

Internet of Things (IoT) is a concept adopted in nearly every aspect of human life, leading to an explosive utilization of intelligent devices. Notably, such solutions are especially integrated in the industrial sector, to allow the remote monitoring and control of critical infrastructure. Such global integration of IoT solutions has led to an expanded attack surface against IoT-enabled infrastructures. Artificial intelligence and machine learning have demonstrated their ability to resolve issues that would have been impossible or difficult to address otherwise; thus, such solutions are closely associated with securing IoT. Classical collaborative and distributed machine learning approaches are known to compromise sensitive information. In our paper, we demonstrate the creation of a network flow-based Intrusion Detection System (IDS) aiming to protecting critical infrastructures, stemming from the pairing of two machine learning techniques, namely, federated learning and active learning. The former is utilized for privately training models in federation, while the latter is a semi-supervised approach applied for global model adaptation to each of the participant’s traffic. Experimental results indicate that global models perform significantly better for each participant, when locally personalized with just a few active learning queries. Specifically, we demonstrate how the accuracy increase can reach 7.07% in only 10 queries.


2021 ◽  
Vol 297 ◽  
pp. 01073
Author(s):  
Sabyasachi Pramanik ◽  
K. Martin Sagayam ◽  
Om Prakash Jena

Cancer has been described as a diverse illness with several distinct subtypes that may occur simultaneously. As a result, early detection and forecast of cancer types have graced essentially in cancer fact-finding methods since they may help to improve the clinical treatment of cancer survivors. The significance of categorizing cancer suffers into higher or lower-threat categories has prompted numerous fact-finding associates from the bioscience and genomics field to investigate the utilization of machine learning (ML) algorithms in cancer diagnosis and treatment. Because of this, these methods have been used with the goal of simulating the development and treatment of malignant diseases in humans. Furthermore, the capacity of machine learning techniques to identify important characteristics from complicated datasets demonstrates the significance of these technologies. These technologies include Bayesian networks and artificial neural networks, along with a number of other approaches. Decision Trees and Support Vector Machines which have already been extensively used in cancer research for the creation of predictive models, also lead to accurate decision making. The application of machine learning techniques may undoubtedly enhance our knowledge of cancer development; nevertheless, a sufficient degree of validation is required before these approaches can be considered for use in daily clinical practice. An overview of current machine learning approaches utilized in the simulation of cancer development is presented in this paper. All of the supervised machine learning approaches described here, along with a variety of input characteristics and data samples, are used to build the prediction models. In light of the increasing trend towards the use of machine learning methods in biomedical research, we offer the most current papers that have used these approaches to predict risk of cancer or patient outcomes in order to better understand cancer.


Sign in / Sign up

Export Citation Format

Share Document