Analytical solution of frost heaving force and stress distribution in cold region tunnels under non-axisymmetric stress and transversely isotropic frost heave of surrounding rock

2020 ◽  
Vol 178 ◽  
pp. 103117
Author(s):  
Zhitao Lyu ◽  
Caichu Xia ◽  
Weiping Liu
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jiabing Zhang ◽  
Xiaohu Zhang ◽  
Helin Fu ◽  
Yimin Wu ◽  
Zhen Huang ◽  
...  

Frost damage is a frequent occurrence in cold regions and can threaten the normal use and structural stability of tunnel engineering projects. To accurately determine the frost heaving force and effectively evaluate the frost damage in cold-region tunnels, an analytical solution for the frost heaving force considering the freeze-thaw (F-T) damage and transversely isotropic characteristics of surrounding rock is presented based on complex variable theory and the power series method. The calculation results indicate that the frost heaving force acts on the lining considering that the transversely isotropic characteristics of surrounding rock are significantly greater than those when assuming the surrounding rock is homogeneous isotropic media. This demonstrates that the transversely isotropic characteristics of surrounding rock have a considerable impact on the frost heaving force and should be considered. The frost heaving force continuously increases as the bedding angle increases from 0° to 90°, and the maximum frost heaving force in the Guanjiao tunnel (the rock mass bedding angle is 30°) of the Xining-Geermu Railway in China is approximately 1.04 MPa. In addition, the influence of F-T cycles on the frost heaving force in cold-region tunnels is investigated based on the analytical solution of the frost heaving force proposed in this paper. The frost heaving force acting on the lining decreases with an increasing number of F-T cycles due to the deterioration of the mechanical parameters of the surrounding rock.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jie-Tao Guo ◽  
Zhe-Ming Zhang ◽  
Yao-Lan Tang ◽  
Jian Ji

With the high demand for construction of tunnels in China’s severe cold regions, the problem of frost heaving has become an important factor that endangers tunnel safety. This paper attempts to investigate the effect of frost heave of cavity water that widely exists in the tunneling engineering on the tunnel stability. According to the actual deformation of the surrounding rock of the tunnel, the viscoelastic behavior is considered to the surrounding rock. On the premise of the elastic solution of stagnant water frost heave, the viscoelastic solution of frost heaving pressure is deduced by Laplace transform using the generalized Kelvin model based on the elastic-viscoelastic correspondence principle. The frost heaving force is analyzed through a case study with variations in the size of the cavity defect as well as the constitutive model parameters. It is concluded that the frost heaving force increases with the cavity defect size; over time, the frost heaving force gradually increases, but it will eventually stabilize. It is found that when the frost heaving force reaches a certain level, the surrounding rock with low strength or the lining with insufficient strength will crack, and the frost heaving force will not continue to increase.


2019 ◽  
Vol 23 (9) ◽  
pp. 3831-3842 ◽  
Author(s):  
Qiang Feng ◽  
Shenggang Fu ◽  
Chengxiang Wang ◽  
Weiwei Liu ◽  
Ying Wang ◽  
...  

2013 ◽  
Vol 831 ◽  
pp. 78-82
Author(s):  
Jun Lei Tian ◽  
Xiao Hui Zeng ◽  
Yan Ke Yang ◽  
Jian Qiang Cheng

Ha Tai high speed rail is a high-speed railway in cold region of China. The design criteria is very strict. There is many frozen soil over cold region. The research how to reduce the amount of subgrade frost heaving over Ha Tai high speed rail is of great significance.We use a frost heave model to simulate the subgrade frost heaving in the paper.We research how the fine power content and water content influence the frost heave amount of graded crushed stone by contrast test.The result shows that the fine power content and the water content have great influence on the frost heave amount of graded crushed stone .The frost heave ratio increases with the fine powder content and the water content.


2021 ◽  
Vol 11 (21) ◽  
pp. 10476
Author(s):  
Dongliang Ji ◽  
Hongbao Zhao ◽  
Lei Wang ◽  
Hui Cheng ◽  
Jianfeng Xu

Rock masses with a distinct structure may present a transversely isotropic character; thus, the stress state in a transversely isotropic elastic half-plane surface is an important way to assess the behavior of the interaction between the distributed loading and the surroundings. Most previous theoretical analyses have considered a loading direction that is either vertical or horizontal, and the stress distribution that results from the effect of different loading directions remains unclear. In this paper, based on the transversely isotropic elastic half-plane surface theory, a stress solution that is applicable to distributed loading in any direction is proposed to further examine the loading effect. The consistency between the analytical solution and numerical simulations showed the effectiveness of the proposal that was introduced. Then, it was utilized to analyze the stress distribution rule by changing the Poisson’s ratio and Young’s modulus of the model. The effects of the formation dip angle on the stress state are also examined. The stress distribution, depending on the physical property parameters and relative angle, is predicted using an analytical solution, and the mechanisms associated with the transversely isotropic elastic half-plane surface subjected to the loading in any direction are clarified. Additionally, extensive analyses regarding this case study, with respect to the mechanical behavior associated with changes in the stress boundary, is available. Hence, the proposed analytical solution can more realistically account for the loading problem in many engineering practices.


Sign in / Sign up

Export Citation Format

Share Document