Size control over spherical silver nanoparticles by ascorbic acid reduction

Author(s):  
Yaqiong Qin ◽  
Xiaohui Ji ◽  
Jing Jing ◽  
Hong Liu ◽  
Hongli Wu ◽  
...  
2019 ◽  
Vol 29 (3) ◽  
Author(s):  
Mai Ngọc Tuan Anh

Silver nanoplates (SNPs) having different size were synthesized by a seed-mediated method. The seeds -silver nanoparticles with 4 – 6 nm diameters were synthesized first by reducing silver nitrate with sodium borohydride in the present of Trisodium Citrate and Hydrogen peroxide. Then these seeds were developed by continue reducing Ag\(^+\) ions with various amount of L-Ascorbic acid to form SNPs. Our analysis showed that the concentratrion of L-Ascorbic acid, a secondary reducing agent, played an important role to form SNPs. In addition, the size and in-plane dipole plasmon resonance wavelenght of silver nanoplates were increased when the concentration of added silver nitrate increased. The characterization of SNPs were studied by UV-Vis, FE-SEM, EDS and TEM methods.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2326
Author(s):  
Entesar Ali Ganash ◽  
Reem Mohammad Altuwirqi

In this work, silver nanoparticles (Ag NPs) were synthesized using a chemical reduction approach and a pulsed laser fragmentation in liquid (PLFL) technique, simultaneously. A laser wavelength of 532 nm was focused on the as produced Ag NPs, suspended in an Origanum majorana extract solution, with the aim of controlling their size. The effect of liquid medium concentration and irradiation time on the properties of the fabricated NPs was studied. While the X-ray diffraction (XRD) pattern confirmed the existence of Ag NPs, the UV–Vis spectrophotometry showed a significant absorption peak at about 420 nm, which is attributed to the characteristic surface plasmon resonance (SPR) peak of the obtained Ag NPs. By increasing the irradiation time and the Origanum majora extract concentration, the SPR peak shifted toward a shorter wavelength. This shift indicates a reduction in the NPs’ size. The effect of PLFL on size reduction was clearly revealed from the transmission electron microscopy images. The PLFL technique, depending on experimental parameters, reduced the size of the obtained Ag NPs to less than 10 nm. The mean zeta potential of the fabricated Ag NPs was found to be greater than −30 mV, signifying their stability. The Ag NPs were also found to effectively inhibit bacterial activity. The PLFL technique has proved to be a powerful method for controlling the size of NPs when it is simultaneously associated with a chemical reduction process.


RSC Advances ◽  
2021 ◽  
Vol 11 (58) ◽  
pp. 36698-36706
Author(s):  
Nirangkush Borah ◽  
Amlan Jyoti Kalita ◽  
Ankur kanti Guha ◽  
Manash R. Das ◽  
Chandan Tamuly

In this work, a colorimetric approach for the detection of ascorbic acid and thyroxine was developed by synthesizing cost-effective silver nanoparticles (AgNPs) decorated with epigallocatechin gallate (EGCG) and CTAB.


2019 ◽  
Vol 234 ◽  
pp. 96-100 ◽  
Author(s):  
Farid A. Harraz ◽  
M. Faisal ◽  
A.E. Al-Salami ◽  
Ahmed Mohamed El-Toni ◽  
A.A. Almadiy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document