Effect of lipopeptide structure on gene delivery system properties: Evaluation in 2D and 3D in vitro models

2018 ◽  
Vol 167 ◽  
pp. 328-336 ◽  
Author(s):  
O.O. Koloskova ◽  
A.M. Gileva ◽  
M.G. Drozdova ◽  
M.V. Grechihina ◽  
N.E. Suzina ◽  
...  
2007 ◽  
Vol 342-343 ◽  
pp. 449-452 ◽  
Author(s):  
Tae Hee Kim ◽  
Hua Jin ◽  
Hyun Woo Kim ◽  
Myung Haing Cho ◽  
Jae Woon Nah ◽  
...  

The key strategy for the advancement of gene therapy is the development of an efficient targeted gene delivery system into cells. The targeted gene delivery system is especially important in non-viral gene transfer which shows the relatively low transfection efficiency. It also opens the possibility of selective delivery of therapeutic plasmids to specific tissues. Chitosan has been considered to be a good candidate for gene delivery system, since it is already known as a biocompatible, biodegradable, and low toxic material with high cationic potential. However, low specificity and low transfection efficiency of chitosan need to be overcome prior to clinical trial. In this study, we focused on the chemical modification of chitosan for enhancement of cell specificity and transfection efficiency. Also, the potential of clinical application was investigated.


2017 ◽  
Vol 29 (04) ◽  
pp. 1750027 ◽  
Author(s):  
Ko-Chung Yen ◽  
I-Hua Chen ◽  
Feng-Huei Lin

A major aim of gene therapy is the efficient and specific delivery of therapeutic gene into the desired target tissues. Development of reliable vectors is a major challenge in gene therapy. The aim of this study is to develop calcium phosphate nanoparticles as novel non-viral vectors for the gene delivery system. Calcium phosphate nanoparticles were prepared by water-in-oil microemulsion method with a water to surfactant molar ratio, Wo [Formula: see text] 2–10. This paper studies the design and synthesis of ultra-low size, highly monodispersed DNA doped calcium phosphate nanoparticles of size around 100[Formula: see text]nm in diameter. The structure of DNA-calcium phosphate nanocomplex observed by TEM was displayed as a shell-like structure. This study used pEGFP as a reporter gene. The encapsulating efficiency to encapsulate DNA inside the nanoparticles was greater than 80%. In the MTT test, both calcium phosphate nanoparticles and DNA-calcium phosphate nanocomplex have no negative effect for 293T cells. By gel electrophoresis of free and entrapped pEGFP DNA, the DNA encapsulated inside the nanoparticles was protected from the external DNaseI environment. In vitro transfection studies in 293T cell-line, the DNA-calcium phosphate nanocomplex could be used safely to transfer the encapsulated DNA into the 293T cells and expression green fluorescent protein. The characteristic of DNA-calcium phosphate nanocomplex to deliver DNA belongs to slow release. The property of DNA-calcium phosphate nanocomplex was fit in the requirement of non-viral vectors for the gene delivery system.


2012 ◽  
Vol 2012 (9) ◽  
pp. pdb.prot071043-pdb.prot071043 ◽  
Author(s):  
C. Kimchi-Sarfaty ◽  
M. M. Gottesman

2021 ◽  
Author(s):  
Sheila Barrios-Esteban ◽  
Sonia Reimondez-Troitiño ◽  
Ruman Rahman ◽  
Cameron Alexander ◽  
Marcos García Fuentes ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 641-646 ◽  
Author(s):  
Tae Hee Kim ◽  
Jin Hua ◽  
Hyun Woo Kim ◽  
Myung Haing Cho ◽  
Jae Woon Nah ◽  
...  

The development of an efficient targeted gene delivery system into cells is an important strategy for the advancement of gene therapy. The targeted gene delivery system is especially important in non-viral gene transfer which shows the relative low transfection efficiency. And it also opens the possibility of selective delivery of therapeutic plasmids to specific tissues. Chitosan has been considered to be a good candidate for gene delivery system, since it is already known as a biocompatible, biodegradable, and low toxic material with high cationic potential. However, low specificity and low transfection efficiency of chitosan need to be overcome prior to clinical trial. In this study, we focused on the chemical modification of chitosan for enhancement of cell specificity and transfection efficiency.


Biomaterials ◽  
2007 ◽  
Vol 28 (3) ◽  
pp. 524-531 ◽  
Author(s):  
Thierry Schmitz ◽  
Irene Bravo-Osuna ◽  
Christine Vauthier ◽  
Gilles Ponchel ◽  
Brigitta Loretz ◽  
...  

2009 ◽  
Vol 1237 ◽  
Author(s):  
Akira Tsuchiya ◽  
Takeshi Mori ◽  
Yuki Naritomi ◽  
Jeong-Hun Kang ◽  
Daisuke Asai ◽  
...  

AbstractWe have developed new gene expression-regulating polymer that can activate transgene expression in response to target intracellular signals. Here, we tried applying sonoporation system to this gene regulation system to enhance the gene expression efficacy. Sonoporation is the method for effective gene transfection in vitro and in vivo. Therefore, the method might enhance the transfection efficiency in our polymer and realize an efficient and safe gene delivery system. Results suggested that the combination of our polymer and sonoporation could improve the gene expression compared to the system using only our polymer that transfers genes into cells via endocytosis. It also kept the ability of the gene regulation responding to cellular signals.


Sign in / Sign up

Export Citation Format

Share Document