Lifted methane–air jet flames in a vitiated coflow

2005 ◽  
Vol 143 (4) ◽  
pp. 491-506 ◽  
Author(s):  
R CABRA ◽  
J CHEN ◽  
R DIBBLE ◽  
A KARPETIS ◽  
R BARLOW
Keyword(s):  
Air Jet ◽  
Author(s):  
Pravin Nakod ◽  
Rakesh Yadav ◽  
Pravin Rajeshirke ◽  
Stefano Orsino

The laminar flamelet model (LFM) (Peters, 1986, “Laminar Diffusion Flamelet Models in Non-Premixed Combustion,” Prog. Energy Combust. Sci., 10, pp. 319–339; Peters, “Laminar Flamelet Concepts in Turbulent Combustion,” Proc. Combust. Inst., 21, pp. 1231–1250) represents the turbulent flame brush using statistical averaging of laminar flamelets whose structure is not affected by turbulence. The chemical nonequilibrium effects considered in this model are due to local turbulent straining only. In contrast, the flamelet-generated manifold (FGM) (van Oijen and de Goey, 2000, “Modeling of Premixed Laminar Flames Using Flamelet-Generated Manifolds,” Combust. Sci. Technol., 161, pp. 113–137) model considers that the scalar evolution; the realized trajectories on the thermochemical manifold in a turbulent flame are approximated by the scalar evolution similar to that in a laminar flame. This model does not involve any assumption on flame structure. Therefore, it can be successfully used to model ignition, slow chemistry, and quenching effects far away from the equilibrium. In FGM, 1D premixed flamelets are solved in reaction-progress space rather than physical space. This helps better solution convergence for the flamelets over the entire mixture fraction range, especially with large kinetic mechanisms at the flammability limits (ANSYS FLUENT 14.5 Theory Guide Help Document, http://www.ansys.com). In the present work, a systematic comparative study of the FGM model with the LFM for four different turbulent diffusion/premixed flames is presented. The first flame considered in this work is methane-air flame with dilution air at the downstream. The second and third flames considered are jet flames in a coaxial flow of hot combustion products from a lean premixed flame called Cabra lifted H2 and CH4 flames (Cabra, et al., 2002, “Simultaneous Laser Raman-Rayleigh-LIF Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow,” Proc. Combust. Inst., 29(2), pp. 1881–1888; Lifted CH4/Air Jet Flame in a Vitiated Coflow, http://www.me.berkeley.edu/cal/vcb/data/VCMAData.html) where the reacting flow associated with the central jet exhibits similar chemical kinetics, heat transfer, and molecular transport as recirculation burners without the complex recirculating fluid mechanics. The fourth flame considered is a Sandia flame D (Barlow et al., 2005, “Piloted Methane/Air Jet Flames: Scalar Structure and Transport Effects,” Combust. Flame, 143, pp. 433–449), a piloted methane-air jet flame. It is observed that the simulation results predicted by the FGM model are more physical and accurate compared to the LFM in all the flames presented in this work. The autoignition-controlled flame lift-off is also captured well in the cases of lifted flames using the FGM model.


Author(s):  
Zhixuan Duan ◽  
Brendan Shaffer ◽  
Vincent McDonell ◽  
Georg Baumgartner ◽  
Thomas Sattelmayer

Flashback is a key operability issue for low emission premixed combustion systems operated on high hydrogen content fuels. Previous work investigated fuel composition impacts on flashback propensity and found that burner tip temperature was important in correlating flashback data in premixed jet flames. An enclosure around the jet flame was found to enhance the flame–burner rim interaction. The present study further addresses these issues using a jet burner with various geometric configurations and interchangeable materials. Systematic studies addressing the quantitative influence of various parameters such as tip temperature, burner material, enclosure size, and burner diameter on flashback propensity were carried out. A comprehensive overview of the flashback limits for all conditions tested in the current study as well as those published previously is given. The collective results indicate that the burner materials, tip temperature, and flame confinement play significant roles for flashback propensity and thus help explain previous scatter in flashback data. Furthermore, the present work indicates that the upstream flame propagation during flashback is affected by the burner material. The material with lower thermal conductivity yields larger flashback propensity but slower flame regression inside the tube. These observations can be potentially exploited to minimize the negative impacts of flashback in practical applications.


Author(s):  
Veeraraghava Raju Hasti ◽  
Gaurav Kumar ◽  
Shuaishuai Liu ◽  
Robert P. Lucht ◽  
Jay P. Gore

2016 ◽  
Vol 754 ◽  
pp. 072001 ◽  
Author(s):  
Z D Kravtsov ◽  
Z D Tolstoguzov ◽  
L M Chikishev ◽  
V M Dulin
Keyword(s):  

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Jianxin Xu ◽  
Hua Wang ◽  
Hui Fang

Characterization for nonpremixed biodiesel/air jet flames instability is investigated by the 0-1 test for chaos and recurrence plots. Test conditions involve biodiesel from Jatropha curcas. L-fueled flames have inlet oil pressure of 0.2–0.6 MPa, fuel flow rates (Q1) of 15–30 kg/h, and combustion air flow rate (Q2) of 150–750 m3/h. This method is based on image analysis and nonlinear dynamics. Structures of flame are analyzed using an image analysis technique to extract position series which are representative of the relative change in temperature of combustion chamber. Compared with the method of maximum Lyapunov exponent, the 0-1 test succeeds in detecting the presence of regular and chaotic components in flame position series. Periodic and quasiperiodic characteristics are obtained by the Poincaré sections. A common characteristic of regular nonpremixed flame tip position series is detected by recurrence plots. Experimental results show that these flame oscillations follow a route to chaos via periodic and quasiperiodic states.


Author(s):  
Aravind Ramachandran ◽  
Daniel A. Tyler ◽  
Parth K. Patel ◽  
Venkateswaran Narayanaswamy ◽  
Kevin M. Lyons

Sign in / Sign up

Export Citation Format

Share Document