Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame

2013 ◽  
Vol 160 (7) ◽  
pp. 1298-1309 ◽  
Author(s):  
Michael E. Mueller ◽  
Qing N. Chan ◽  
Nader H. Qamar ◽  
Bassam B. Dally ◽  
Heinz Pitsch ◽  
...  
1999 ◽  
Vol 23 (3-4) ◽  
pp. 425-433 ◽  
Author(s):  
S.- H. Kim ◽  
T. Liu ◽  
K.Y. Huh

A turbulent nonpremixed flame of H2/CO-air stabilized on a bluff-body is simulated by the conditional moment closure (CMC) model. Full spatial variation of the conditional quantities is taken into account for an elliptic recirculating flow field. Comparison has shown reasonable agreement for the conditional and Favre mean temperature and mass fractions of CO and H20 between calculation and experiment. Overprediction of the peak OH mass fraction is attributed to inaccurate modelling of the conditional scalar dissipation rate. The CMC model is capable of predicting major features of a turbulent diffusion flame characterized by finite chemical reaction rates.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Lu Chen ◽  
Francine Battaglia

A bluff body burner was investigated using computational fluid dynamics (CFD) to assess the effects of inlet turbulence intensity and compare the combustion characteristics with and without the bluff-body modeled in the computational domain. The effects of the CFD modeling techniques were assessed for inlet turbulence intensity, using a two-dimensional (2D) versus three-dimensional (3D) computational domain, and whether to include the bluff body in the domain. The simulations were compared with experimental data from the Turbulent Nonpremixed Flames workshop. The results showed that the turbulence intensity specified as a boundary condition at the fuel-jet inlet had a substantial impact on the axial decay of mixture fraction and temperature, which was overlooked by previous researchers when the bluff body was not modeled. The numerical results of the 2D axisymmetric and 3D domains without the bluff body showed that the 3D domain provided the best predictions when the turbulence intensity was defined using a published correlation versus experimental estimates since the k–ε turbulence model underestimated dissipation. It was shown that a 2D axisymmetric domain can be used to obtain predictions with acceptable numerical errors without the inclusion of the bluff body, and that a uniform inlet velocity can be specified, provided that the inlet turbulence intensity is defined using the correlation by Durst et al. (“Methods to Set Up and Investigate Low Reynolds Number, Fully Developed Turbulent Plane Channel Flows,” ASME J. Fluids Eng., 120(3), pp. 496–503.). Finally, further analysis of flow and flame characteristics demonstrated that when the bluff-body was included for the 2D axisymmetric domain, predictions improved and the flow was insensitive to inlet turbulence intensities because the bluff-body provided an entrance region for the flow to develop before mixing, thus reducing inlet effects. Thus, if experimental inlet data are not available, the addition of the bluff-body in the computational domain provides a more accurate jet velocity profile entering the reacting domain and eliminates errors caused by the inlet boundary condition.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Lu Chen ◽  
Francine Battaglia

A numerical investigation is presented assessing the effects of hydrogen compositions and nonflammable diluent mixtures on the combustion and NO emission characteristics of syngas nonpremixed flames for a bluff-body burner. An assessment of turbulent nonpremixed modeling techniques is presented and is compared with the experiments of Correa and Gulati (1992, “Measurements and Modeling of a Bluff Body Stabilized Flame,” Combust. Flame, 89(2), pp. 195–213). The realizable k–ε and the Reynolds stress (RSM) turbulence models were found to perform the best. As a result, increased hydrogen content caused the radial velocity and strain rate to decrease, which was important for mixing whereby NO production decreased. Also, the effectiveness of nonflammable diluent mixtures of N2, CO2, and H2O was characterized in terms of the ability to reduce NO emission in syngas nonpremixed flames. Results indicated that CO2 was the most effective diluent to reduce NO emission and H2O was more effective than N2. CO2 produced low levels of OH radical, which made CO2 the most effective diluent. Although H2O increased OH radicals, it was still effective to reduce thermal NO because of its high specific heat. It will be numerically shown that hydrogen concentration in the H2/CO/N2 flame does not significantly affect temperature but dramatically decreases NO emission, which is important for industrial applications that can use hydrogen in syngas flames.


2005 ◽  
Vol 127 (5) ◽  
pp. 967-977 ◽  
Author(s):  
Brian A. Edge ◽  
Eric G. Paterson ◽  
Gary S. Settles

The unsteady aerodynamic wake of a human is studied using a time-accurate computational fluid dynamics simulation. Transport of a scalar contaminant, which originates on the body, is also considered. An existing Reynolds-averaged Navier-Stokes solver is modified to include energy, scalar-transport, and thermal buoyancy effects. Structured overset grids are used to discretize the geometry and the flow field. Results indicate two distinct wake regions: an unsteady bluff-body wake behind the torso which is characterized by a mean recirculation zone, and a region of unsteady vortex shedding behind the legs which is dominated by a “jet” of air formed between the legs. A significant downwash occurs behind the body which has the effect of laterally spreading the lower portions of the wake. The magnitude of the scalar contaminant is shown to decay exponentially within the wake and is found to be highly dependent upon the source location.


1993 ◽  
Vol 46-47 ◽  
pp. 791-800 ◽  
Author(s):  
Siva Parameswaran ◽  
Ilker Kiris ◽  
Richard Sun ◽  
Mark Gleason

Sign in / Sign up

Export Citation Format

Share Document