scholarly journals Impact of sour gas composition on ignition delay and burning velocity in air and oxy-fuel combustion

2015 ◽  
Vol 162 (7) ◽  
pp. 2749-2757 ◽  
Author(s):  
Dominik Bongartz ◽  
Ahmed F. Ghoniem
2018 ◽  
Vol 20 (4) ◽  
pp. 405-423 ◽  
Author(s):  
Zhenkuo Wu ◽  
Christopher J Rutland ◽  
Zhiyu Han

Natural gas and diesel dual-fuel combustion is a promising technology for efficiently utilizing natural gas in a compression ignition engine. Natural gas composition varies depending on the geographical source, which affects engine performance. The methane number is an indicator of natural gas fuel quality to assess the variation in composition. In this study, the influences of methane number on natural gas/diesel dual-fuel combustion were numerically examined using computational fluid dynamic simulations. The differences between natural gases with the same methane number but different components were also compared. Two dual-fuel combustion strategies, diesel pilot ignition, and reactivity controlled compression ignition were evaluated. The results show that for both diesel pilot ignition and reactivity controlled compression ignition, the ignition delay increases and the combustion duration decreases as the methane number is increased. The retarded trend of ignition of reactivity controlled compression ignition is more significant than that of diesel pilot ignition, while the decreased trend in combustion duration is less significant. To understand this trend, a chemical kinetics study of ignition delay characteristic of natural gas and n-heptane mixture was conducted. The result reveals that introducing ethane, propane, or an ethane–propane mixture into pure methane shortens the ignition delay in the entire temperature range. However, for the methane and n-heptane mixture, adding ethane, or propane, or an ethane–propane mixture shortens the ignition delay in the high temperature range, while increases the ignition delay in the low temperature range. These observations in combination with the analysis of air–fuel mixture formation and combustion provide the evidence to interpret the different ignition and combustion behaviors between diesel pilot ignition and reactivity controlled compression ignition combustion. In addition, a temperature A-factor sensitivity study was carried out to explain the result of the chemical kinetics study. Furthermore, the responses of emissions to methane number were also investigated. The results show that for diesel pilot ignition, the hydrocarbon and carbon monoxide emissions decrease with the decreased methane number. However, for reactivity controlled compression ignition, the variations of hydrocarbon and carbon monoxide emissions with the methane number are not so obvious as for diesel pilot ignition combustion. For both diesel pilot ignition and reactivity controlled compression ignition combustion, the nitrogen oxides emissions show a strong dependence on combustion phasing rather than natural gas composition. Overall, to control diesel pilot ignition combustion, the methane number should be considered together with other parameters. However, attention should be paid to other control parameters for the reactivity controlled compression ignition combustion. The engine performance of reactivity controlled compression ignition is not sensitive to the variation of natural gas composition, so it can adapt to the natural gas from different sources.


Energy ◽  
2017 ◽  
Vol 126 ◽  
pp. 796-809 ◽  
Author(s):  
Jun Li ◽  
Hongyu Huang ◽  
Noriyuki Kobayashi ◽  
Chenguang Wang ◽  
Haoran Yuan

Author(s):  
A. N. Mazas ◽  
D. A. Lacoste ◽  
T. Schuller

The effects of CO2 and H2O addition on premixed oxy-fuel combustion are investigated with experiments and numerical simulations on the laminar flame speed of CH4/O2/CO2/H2O(v) and CH4/O2/N2/H2O(v) mixtures, at atmospheric pressure and for a reactants inlet temperature Tu = 373 K. Experiments are conducted with steady laminar conical premixed flames over a range of operating conditions representative of oxy-fuel combustion with flue gas recirculation. The relative O2-to-CO2 and O2-to-N2 ratios, respectively defined as O2/(O2+CO2) (mol.) and O2/(O2+N2) (mol.), are varied from 0.21 to 1.0. The equivalence ratio of the mixtures ranges from 0.5 to 1.5, and the steam molar fraction in the reactive mixture is varied from 0 to 0.45. Laminar flame speeds are measured with the flame area method using a Schlieren apparatus. Experiments are completed by simulations with the PREMIX code using the detailed kinetic mechanism GRI-mech. 3.0. Numerical predictions are found in good agreement with experimental data for all cases explored. It is also shown that the laminar flame speed of CH4/O2/N2 mixtures diluted with steam H2O(v) features a quasi-linear decrease when increasing the diluent molar fraction, even at high dilution rates. Effects of N2 replacement by CO2 in wet reactive mixtures are then investigated. A similar quasi-linear decrease of the flame speed is observed for CH4/O2/CO2 H2O-diluted flames. For a similar flame speed in dry conditions, results show a larger reduction of the burning velocity for CH4/O2/N2/H2O mixtures than for CH4/O2/CO2/H2O mixtures, when the steam molar fraction is increased. Finally, it is observed that the laminar flame speed of weakly (CO2, H2O)-diluted CH4/O2 mixtures is underestimated by the GRI-mech 3.0 predictions.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
David A. Wilson ◽  
Kevin M. Lyons

This paper describes an analysis of the burning velocity of pure and diluted fuels, with implications for the development and operation of biogas-fueled combustors. Background work in the area of flame stabilization and propagation are introduced from the combustion literature. Fuels examined in this paper were methane and ethylene; the diluents were primarily nitrogen, as well as argon, carbon dioxide, and helium. Trends in terms of burning velocities as functions of equivalence ratio are reported for a variety of fuels. Additionally, flame temperatures and associated burning velocities as a function of diluent composition are reported. Implications for several flame stabilization theories are discussed, as well as point to potential issues in converting combustors to accept biogas as a fuel permitting stable operation.


1994 ◽  
Vol 99 (2) ◽  
pp. 192-200 ◽  
Author(s):  
J.D. Naber ◽  
D.L. Siebers ◽  
S.S. Di Julio ◽  
C.K. Westbrook

Author(s):  
Duc-Khanh Nguyen ◽  
Louis Sileghem ◽  
Sebastian Verhelst

The current work provides a quasi-dimensional model for the combustion of methanol–gasoline blends. New correlations for the laminar burning velocity of gasoline and methanol are developed and used together with a mixing rule to calculate the laminar burning velocity of the blends. Several factors (such as the laminar burning velocity, initial flame kernel, residual gas fraction, turbulence, etc.) have been investigated and the sensitivity of these factors and the used sub-models on the predictive performance was assessed. The simulation results were compared with measurement data from two engines on different gasoline–methanol blends. The results show the importance of the laminar burning velocity correlation, the method of initializing combustion and the turbulent burning velocity model. The newly developed laminar burning velocity correlation of gasoline performed equally or better than the existing correlations and the newly developed correlation of methanol outperformed the other correlations. The initial flame kernel size had a strong influence on the ignition delay. Changing the initial flame kernel to reproduce the same ignition delay was very effective to improve the simulations. Several turbulent combustion models were tested with the newly developed laminar burning velocity correlations and optimized ignition delay. In conclusion, the model of Bradley reproduced the trend going from gasoline to methanol much better than others due to the inclusion of the Lewis number.


Sign in / Sign up

Export Citation Format

Share Document