Numerical evaluation of the effect of methane number on natural gas and diesel dual-fuel combustion

2018 ◽  
Vol 20 (4) ◽  
pp. 405-423 ◽  
Author(s):  
Zhenkuo Wu ◽  
Christopher J Rutland ◽  
Zhiyu Han

Natural gas and diesel dual-fuel combustion is a promising technology for efficiently utilizing natural gas in a compression ignition engine. Natural gas composition varies depending on the geographical source, which affects engine performance. The methane number is an indicator of natural gas fuel quality to assess the variation in composition. In this study, the influences of methane number on natural gas/diesel dual-fuel combustion were numerically examined using computational fluid dynamic simulations. The differences between natural gases with the same methane number but different components were also compared. Two dual-fuel combustion strategies, diesel pilot ignition, and reactivity controlled compression ignition were evaluated. The results show that for both diesel pilot ignition and reactivity controlled compression ignition, the ignition delay increases and the combustion duration decreases as the methane number is increased. The retarded trend of ignition of reactivity controlled compression ignition is more significant than that of diesel pilot ignition, while the decreased trend in combustion duration is less significant. To understand this trend, a chemical kinetics study of ignition delay characteristic of natural gas and n-heptane mixture was conducted. The result reveals that introducing ethane, propane, or an ethane–propane mixture into pure methane shortens the ignition delay in the entire temperature range. However, for the methane and n-heptane mixture, adding ethane, or propane, or an ethane–propane mixture shortens the ignition delay in the high temperature range, while increases the ignition delay in the low temperature range. These observations in combination with the analysis of air–fuel mixture formation and combustion provide the evidence to interpret the different ignition and combustion behaviors between diesel pilot ignition and reactivity controlled compression ignition combustion. In addition, a temperature A-factor sensitivity study was carried out to explain the result of the chemical kinetics study. Furthermore, the responses of emissions to methane number were also investigated. The results show that for diesel pilot ignition, the hydrocarbon and carbon monoxide emissions decrease with the decreased methane number. However, for reactivity controlled compression ignition, the variations of hydrocarbon and carbon monoxide emissions with the methane number are not so obvious as for diesel pilot ignition combustion. For both diesel pilot ignition and reactivity controlled compression ignition combustion, the nitrogen oxides emissions show a strong dependence on combustion phasing rather than natural gas composition. Overall, to control diesel pilot ignition combustion, the methane number should be considered together with other parameters. However, attention should be paid to other control parameters for the reactivity controlled compression ignition combustion. The engine performance of reactivity controlled compression ignition is not sensitive to the variation of natural gas composition, so it can adapt to the natural gas from different sources.

Author(s):  
Daniel G. Van Alstine ◽  
David T. Montgomery ◽  
Timothy J. Callahan ◽  
Radu C. Florea

Low natural gas prices have made the fuel an attractive alternative to diesel and other common fuels, particularly in applications that consume large quantities of fuel. The North American rail industry is examining the use of locomotives powered by dual fuel engines to realize savings in fuel costs. These dual fuel engines can substitute a large portion of the diesel fuel with natural gas that is premixed with the intake air. Engine knock in traditional premixed spark-ignited combustion is undesirable but well characterized by the Methane Number index, which quantifies the propensity of a gaseous fuel to autoignite after a period of time at high temperature. Originally developed for spark-ignited engines, the ability of the methane number index to predict a fuel’s “knock” behavior in dual fuel combustion is not as fully understood. The objective of this effort is to evaluate the ability of an existing methane number algorithm to predict rapid combustion in a dual fuel engine. Sets of specialized natural gas fuel blends that, according to the MWM methane number algorithm, should have similar knock characteristics are tested in a dual fuel engine and induced to experience rapid combustion. Test results and CFD analysis reveal that rapid or aggressive combustion rates happen late in the dual fuel combustion event with this engine hardware configuration. The transition from normal combustion to late rapid combustion is characterized by changes in the heat release rate profiles. In this study, the transition is also represented by a shift in the crank angle location of the combustion’s peak heat release rate. For fuels of similar methane number that should exhibit similar knock behavior, these transitions occur at significantly different relative air-fuel ratios, demonstrating that the existing MWM methane number algorithm, while excellent for spark-ignited engines, does not fully predict the propensity for rapid combustion to occur in a dual fuel engine within the scope of this study. This indicates that physical and chemical phenomena present in rapid or aggressive dual fuel combustion processes may differ from those in knocking spark-ignited combustion. In its current form a methane number algorithm can be used to conservatively rate dual fuel engines. It is possible that derivation of a new reactivity index that better predicts rapid combustion behavior of the gaseous fuel in dual fuel combustion would allow ratings to be less conservative.


2018 ◽  
Vol 20 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Jeongwoo Lee ◽  
Sanghyun Chu ◽  
Jaegu Kang ◽  
Kyoungdoug Min ◽  
Hyunsung Jung ◽  
...  

In this research, there are two major sections for analysis: the characteristics of gasoline and diesel dual-fuel combustion and their application to operating load extension with high thermal efficiency and low emissions. All the experiments were completed using a single-cylinder compression ignition engine with 395 cc displacement. In the first section, the dual-fuel combustion modes were classified into three cases by their heat release rate shapes. Staying at 1500 r/min with a total value of 580 J of low heat for each cycle condition, the diesel injection timing was varied from before top dead center with a 6–46 °crank angle with 70% of gasoline fraction based on the low heating value. Among the modes were two suitable dual-fuel combustion modes for a premixed compression ignition. The first suitable mode shows multiple peaks in the heat release rate (mode 2) and the second suitable mode shows a single peak with a “bell-shaped” heat release rate (mode 3). These two dual-fuel combustion types showed a high gross indicated thermal efficiency of up to 46%. Based on the results in the first section, the practical application of dual-fuel premixed compression ignition combustion was investigated considering a high thermal efficiency and a high-load condition. At a 1500 r/min/gross indicated mean effective pressure of 6.5 bar, 48% of the gross indicated thermal efficiency was obtained by using dual-fuel premixed compression ignition combustion mode 3. This mode was typical of a “reactivity controlled compression ignition,” while the nitrogen oxides and the particulate matter emissions satisfied the EURO-6 regulation (0.21 g/kW h and 2.8 mg/m3, respectively). In addition, a high thermal efficiency (45%) with low maximum pressure rise rate, NOx (nitrogen oxides), and particulate matter emissions was obtained at 2000 r/min/gross indicated mean effective pressure 14 bar condition by the adjustment of dual-fuel premixed compression ignition combustion mode 2. As a result, this research contributes to the understanding and practical application of dual-fuel combustion for a light-duty compression ignition engine.


2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


2011 ◽  
Author(s):  
Julio C. C. Eg\ausquiza ◽  
Sergio L. Braga ◽  
Carlos V. M. Braga ◽  
Antonio C. S. Villela ◽  
Newton R. Moura

Sign in / Sign up

Export Citation Format

Share Document