Biphasic sensitization effect of NO2 on n-C4H10 auto-ignition

2022 ◽  
Vol 237 ◽  
pp. 111844
Author(s):  
Honghuan Wu ◽  
Wuchuan Sun ◽  
Zuohua Huang ◽  
Yingjia Zhang
Author(s):  
Amrit Sahu ◽  
A.A.E.S Mohamed ◽  
Snehashish Panigrahy ◽  
Gilles Bourque ◽  
Henry Curran

Abstract New ignition delay time measurements (IDT) of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840-1050 K), pressures (20-30 bar), and equivalence ratios (f = 0.5 and 1.5). The experiments were complemented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1-2%) of n-hexane and n-heptane can lead to an increase in reactivity by ~40-60 ms at a temperature of 700 K. The IDTs of these mixtures decrease rapidly with an increase in the concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration >10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700-900 K compared to that at higher temperatures (>900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M)??H+?H (+M) at higher temperatures while the fuel-dependent reactions such as H-atom abstraction, RO2 dissociation, or Q OOH+O2 reactions are less important compared to the temperature range 700-900 K, where they are very important.


Author(s):  
Amrit Bikram Sahu ◽  
A. Abd El-Sabor Mohamed ◽  
Snehasish Panigrahy ◽  
Gilles Bourque ◽  
Henry Curran

Abstract New ignition delay time measurements of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840–1050 K), pressures (20–30 bar), and equivalence ratios (φ = 0.5 and 1.5). The experiments were complimented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1–2%) of n-hexane and n-heptane can lead to increase in reactivity by ∼40–60 ms at compressed temperature (TC) = 700 K. The ignition delay time (IDT) of these mixtures decrease rapidly with an increase in concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration beyond 10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700–900 K compared to that at higher temperatures (> 900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M) ↔ 2ȮH(+M) at higher temperatures while the fuel dependent reactions such as H-atom abstraction, RȮ2 dissociation or Q.OOH + O2 reactions are less important compared to 700–900 K, where they are very important.


Author(s):  
Subrat Garnayak ◽  
Ayman M Elbaz ◽  
Olawole Kuti ◽  
Sukanta Kumar Dash ◽  
William L Roberts ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 678
Author(s):  
Yuqi Han ◽  
Yan Jiang ◽  
Wei Guo ◽  
Bing Li ◽  
Lu Zhang ◽  
...  

Based on the anchoring effect due to the self-assembling behavior of the phospholipid molecules at the interface between the liquid crystal and water phases on the orientation of liquid crystals, the optical response associated with the orientation and structure of liquid crystals with respect to the concentration of 1,2-didodecanoyl-sn-glycero-3-phosphocholine solution has been investigated. The optical response owing to changes in the orientation and structure of the mixed cholesteric liquid crystals with respect to the change in the concentration of phosphatidylcholine has been obtained. Moreover, the feasibility of using as-prepared mixed cholesteric liquid crystals to measure the phosphatidylcholine concentration has been verified. A methodology to measure the reflectance spectrum by using mixed cholesteric liquid crystals to sensitize the phosphatidylcholine concentration has been further realized. The sensitization effect of the mixed cholesteric liquid crystals on the measurement of phosphatidylcholine concentration was also verified.


2021 ◽  
Vol 227 ◽  
pp. 11-26
Author(s):  
Luis A. Carbajal-Carrasco ◽  
Zakaria Bouali ◽  
Arnaud Mura
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document