Dislocation mobility and Peierls stress of c-type screw dislocations in GaN from molecular dynamics

2018 ◽  
Vol 153 ◽  
pp. 409-416 ◽  
Author(s):  
N. Scott Weingarten
1999 ◽  
Vol 578 ◽  
Author(s):  
T. Vegge ◽  
O. B. Pedersen ◽  
T. Leffers ◽  
K. W. Jacobsen

AbstractUsing atomistic simulations we investigate the annihilation of screw dislocation dipoles in Cu. In particular we determine the influence of jogs on the annihilation barrier for screw dislocation dipoles. The simulations involve energy minimizations, molecular dynamics, and the Nudged Elastic Band method. We find that jogs on screw dislocations substantially reduce the annihilation barrier, hence leading to an increase in the minimum stable dipole height.


2003 ◽  
Vol 67 (2) ◽  
Author(s):  
D. Mordehai ◽  
Y. Ashkenazy ◽  
I. Kelson ◽  
G. Makov

2002 ◽  
Vol 23 (1-4) ◽  
pp. 111-115 ◽  
Author(s):  
Jinpeng Chang ◽  
Wei Cai ◽  
Vasily V Bulatov ◽  
Sidney Yip

1994 ◽  
Vol 364 ◽  
Author(s):  
M. A. Morris ◽  
J. P. Perez ◽  
R. Darolia

AbstractThe dislocation configurations produced by room and high temperature compression of <100> oriented single crystals of binary NiAl and in those containing iron and hafnium additions have been analysed and compared to those obtained by hardness indentation and TEM insitu tensile tests. Kinking occurs during room temperature compression such that <100> dislocations are activated in all cases but the iron-containing alloy also exhibited a large density of <111> screw dislocations. The latter however, appear immobile when they are created by hardness indentations of thin foils, while only pile-ups of <100> segments can propagate. Similarly, although different slip systems are present after high temperature compression, only <100> dislocation segments have been confirmed to be mobile after room temperature hardness indentation of these predeformed thin foils. The improvement in ductility observed at room temperature in the predeformed specimens of the binary and the iron containing alloys has been attributed to the increased production of these mobile <100> dislocations.


2000 ◽  
Vol 634 ◽  
Author(s):  
Richard J Kurtz ◽  
Richard G. Hoagland ◽  
Howard L. Heinisch

ABSTRACTThe mobility of misfit dislocations in semicoherent Cu/Ni and Cu/Ag interfaces is determined by molecular dynamics and elastic band simulation methods. Cube-on-cube oriented Cu/Ni and Cu/Ag systems were studied with the interfaces parallel to (010). Core structures of misfit dislocations in semicoherent interfaces are found to be quite different in these systems. In Cu/Ni the misfits have very narrow cores in the plane of the interface. Consequently, the shear stress to move these dislocations is large, ∼1.1 GPa. The core width and hence the misfit mobility can be changed by placing the misfit away from the chemical interface. Placement of the misfit oneatom layer into the Cu increased the core width a factor of 1.6 and lowered the threshold shear stress to 0.4 GPa. The misfit dislocations in Cu/Ag interfaces, on the other hand, are wide and therefore are much more mobile. The threshold shear stress for misfit movement in Cu/Ag is very low, ∼0.03 GPa.


Sign in / Sign up

Export Citation Format

Share Document