Adsorption behavior of metal-organic frameworks: From single simulation, high-throughput computational screening to machine learning

Author(s):  
Yaling Yan ◽  
Lulu Zhang ◽  
Shuhua Li ◽  
Hong Liang ◽  
Zhiwei Qiao
2020 ◽  
Vol 5 (4) ◽  
pp. 725-742 ◽  
Author(s):  
Zenan Shi ◽  
Wenyuan Yang ◽  
Xiaomei Deng ◽  
Chengzhi Cai ◽  
Yaling Yan ◽  
...  

The combination of machine learning and high-throughput computation for the screening of MOFs with high performance.


2018 ◽  
Author(s):  
Andrew Tarzia ◽  
Masahide Takahashi ◽  
Paolo Falcaro ◽  
Aaron Thornton ◽  
Christian Doonan ◽  
...  

The ability to align porous metal–organic frameworks (MOFs) on substrate surfaces on a macroscopic scale is a vital step towards integrating MOFs into functional devices. But macroscale surface alignment of MOF crystals has only been demonstrated in a few cases. To accelerate the materials discovery process, we have developed a high-throughput computational screening algorithm to identify MOFs that are likely to undergo macroscale aligned heterepitaxial growth on a substrate. Screening of thousands of MOF structures by this process can be achieved in a few days on a desktop workstation. The algorithm filters MOFs based on surface chemical compatibility, lattice matching with the substrate, and interfacial bonding. Our method uses a simple new computationally efficient measure of the interfacial energy that considers both bond and defect formation at the interface. Furthermore, we show that this novel descriptor is a better predictor of aligned heteroepitaxial growth than other established interface descriptors, by testing our screening algorithm on a sample set of copper MOFs that have been grown heteroepitaxially on a copper hydroxide surface. Application of the screening process to several MOF databases reveals that the top candidates for aligned growth on copper hydroxide comprise mostly MOFs with rectangular lattice symmetry in the plane of the substrate. This result indicates a substrate-directing effect that could be exploited in targeted synthetic strategies. We also identify that MOFs likely to form aligned heterostructures have broad distributions of in-plane pore sizes and anisotropies. Accordingly, this suggests that aligned MOF thin films with a wide range of properties may be experimentally accessible.


2018 ◽  
Author(s):  
Andrew Tarzia ◽  
Masahide Takahashi ◽  
Paolo Falcaro ◽  
Aaron Thornton ◽  
Christian Doonan ◽  
...  

The ability to align porous metal–organic frameworks (MOFs) on substrate surfaces on a macroscopic scale is a vital step towards integrating MOFs into functional devices. But macroscale surface alignment of MOF crystals has only been demonstrated in a few cases. To accelerate the materials discovery process, we have developed a high-throughput computational screening algorithm to identify MOFs that are likely to undergo macroscale aligned heterepitaxial growth on a substrate. Screening of thousands of MOF structures by this process can be achieved in a few days on a desktop workstation. The algorithm filters MOFs based on surface chemical compatibility, lattice matching with the substrate, and interfacial bonding. Our method uses a simple new computationally efficient measure of the interfacial energy that considers both bond and defect formation at the interface. Furthermore, we show that this novel descriptor is a better predictor of aligned heteroepitaxial growth than other established interface descriptors, by testing our screening algorithm on a sample set of copper MOFs that have been grown heteroepitaxially on a copper hydroxide surface. Application of the screening process to several MOF databases reveals that the top candidates for aligned growth on copper hydroxide comprise mostly MOFs with rectangular lattice symmetry in the plane of the substrate. This result indicates a substrate-directing effect that could be exploited in targeted synthetic strategies. We also identify that MOFs likely to form aligned heterostructures have broad distributions of in-plane pore sizes and anisotropies. Accordingly, this suggests that aligned MOF thin films with a wide range of properties may be experimentally accessible.


2019 ◽  
Vol 21 (16) ◽  
pp. 8508-8516 ◽  
Author(s):  
Liang Peng ◽  
Qiao Zhu ◽  
Pinglian Wu ◽  
Xuanjun Wu ◽  
Weiquan Cai

A large-scale computational screening of 13 512 MOFs with topological diversity was carried out to search the optimal candidates for the simultaneous separation of two dimethyl butanes from the quinary equimolar mixture of hexane isomers.


2019 ◽  
Vol 7 (43) ◽  
pp. 25010-25019 ◽  
Author(s):  
Wei Li ◽  
Xiaoxiao Xia ◽  
Song Li

High-throughput computational screening of millions of cascaded adsorption heat pumps based on metal–organic frameworks and covalent–organic frameworks.


Sign in / Sign up

Export Citation Format

Share Document