Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point

2022 ◽  
Vol 201 ◽  
pp. 110902
Author(s):  
Avik Mahata ◽  
Tanmoy Mukhopadhyay ◽  
Mohsen Asle Zaeem
2004 ◽  
Vol 818 ◽  
Author(s):  
Guofeng Wang ◽  
M.A. Van Hove ◽  
P.N. Ross ◽  
M.I. Baskes

AbstractWe have developed interatomic potentials for Pt-Ni and Pt-Re alloys within the modified embedded atom method (MEAM). Furthermore, we applied these potentials to study the equilibrium structures of Pt75Ni25 and Pt75Re25 nanoparticles at T=600 K using the Monte Carlo method. In this work, the nanoparticles are assumed to have disordered fcc cubo-octahedral shapes (terminated by {111} and {100} facets) and contain from 586 to 4033 atoms (corresponding to a diameter from 2.5 to 5 nm). It was found that, due to surface segregation, (1) the Pt75Ni25 nanoparticles form a surface-sandwich structure: the Pt atoms are enriched in the outermost and third atomic shells, while the Ni atoms are enriched in the second atomic shell; (2) the equilibrium Pt75Re25 nanoparticles adopt a core-shell structure: a Pt-enriched shell surrounding a Pt-deficient core.


1990 ◽  
Vol 205 ◽  
Author(s):  
Stephen J. Cook ◽  
Paulette Clancy

AbstractThe phase behavior of silicon is studied using the Modified Embedded Atom Method (MEAM) proposed by Baskes, Nelson and Wright. We find this model to quantitatively reproduce aspects of both the solid and liquid phases with an accuracy comparable to the widely-used Stillinger-Weber (SW) potential, thus providing an opportunity to examine the consistency of results obtained previously using the SW model. Although the models are very different, they both produce solid-liquid interfaces on both silicon (100) and (111) which have very similar morphologies. We find that the MEAM predicts the melting point of silicon to be 1445K, or 14% lower than the experimental value. The model also predicts the heat of melting to be 34.9 kJ/mol, 45% lower than the experimental value of 50.6 kJ/mol, and a liquid density which is 5.4% larger than that of the solid at the melting point, which is the density ratio found by experiment. The liquid density is found to be too low with respect to experiment. We also suggest a correction which might be applied to the MEAM model to improve its description of the liquid phase.


Sign in / Sign up

Export Citation Format

Share Document