CLUeFARM: Integrated web-service platform for smart farms

2018 ◽  
Vol 154 ◽  
pp. 134-154 ◽  
Author(s):  
Madalin Colezea ◽  
George Musat ◽  
Florin Pop ◽  
Catalin Negru ◽  
Alexandru Dumitrascu ◽  
...  
Keyword(s):  
2012 ◽  
Vol 271-272 ◽  
pp. 447-451 ◽  
Author(s):  
Yuan Yuan Zhao ◽  
Quan Liu ◽  
Wen Jun Xu ◽  
Lu Gao

Being a kind of actual resources, manufacturing equipment resources (MERs) need to be virtualized and encapsulated into services. Our proposed works mainly focus on manufacturing capability of MERs that is consisted of two aspects: static functional capability and dynamic production capability, and relationship between related concepts so as to model MERs by ontology web language (OWL) that is based on semantic. In this paper, firstly, ontology based methodology within manufacture field is developed according to cloud manufacturing characters. Secondly, manufacturing capability is studied from functional attribute capability and production capability, then, the related concepts classes and relationship are analyzed, with the special properties defined to describe these classes based on semantic. Thirdly, the built in model is described by OWL (ontology web language) using protégé tool and an instance of MER is built based on the proposed model to express its manufacturing capability. Finally, this model is applied to Cloud MERs service platform, which is constructed for a given enterprise group, to provide MERs services. Moreover, Web Service is used in the platform to realize the sharing of the provided services.


Author(s):  
Yeimmy Canon-Lozano ◽  
Angie Melo-Castillo ◽  
Cesar Augusto Gomez-Perilla ◽  
Klaus Banse ◽  
Luis Felipe Herrera-Quintero

2019 ◽  
Author(s):  
Hsueh-Chuan Liu ◽  
Yi-Shian Peng ◽  
Hoong-Chien Lee

Background. MiRNA regulates cellular processes through acting on specific target genes. Hundreds of miRNAs and their target genes have been identified, as are many miRNA-disease associations. Cellular processes, including those related to disease, proceed through multiple interactions, are often organized into pathways among genes and gene products. Large databases on protein-protein interactions (PPIs) are available. Here, we have integrated the information mentioned above to build a web service platform, miRNA Disease Regulatory Network, or miRDRN, for users to construct disease and tissue-specific miRNA-protein regulatory networks. Methods. Data on human protein interaction, disease-associated miRNA, tumor-associated gene, miRNA targeted gene, molecular interaction and reaction network or pathway, gene ontology, gene annotation and gene product information, and gene expression were collected from publicly available databases and integrated. A complete set of regulatory sub-pathways (RSPs) having the form (M, T, G1, G2) were built from the integrated data and stored in the database part of miRDRN, where M is a disease-associated miRNA, T is its regulatory target gene, G1 (G2) is a gene/protein interacting with T (G1). Each sequence (T, G1, G2) was assigned a p-value weighted by the participation of the three genes in molecular interactions and reaction pathways. Results. A web service platform, miRDRN ( http://mirdrn.ncu.edu.tw/mirdrn/), was built to allow users to retrieve a disease and tissue-specific subset of RSPs, from which a miRNA regulatory network is constructed. miRDRN is a database that currently contains 6,973,875 p-valued sub-pathways associated with 119 diseases in 78 tissue types built from 207 diseases-associated miRNA regulating 389 genes, and a web tool that facilitates the construction and visualization of disease and tissue-specific miRNA-protein regulatory networks, for exploring single diseases, or for exploring the comorbidity of disease-pairs. As demonstrations, miRDRN was applied: to explore the single disease colorectal cancer (CRC), in which 26 novel potential CRC target genes were identified; to study the comorbidity of the disease-pair Alzheimer's disease-Type 2 diabetes (AD-T2D), in which 18 novel potential comorbid genes were identified; and, to explore possible causes that may shed light on recent failures of late-phase trials of anti-AD, BACE1 inhibitor drugs, in which genes downstream to BACE1 whose suppression may affect signal transduction were identified.


Sign in / Sign up

Export Citation Format

Share Document