Gallbladder shape extraction from ultrasound images using active contour models

2013 ◽  
Vol 43 (12) ◽  
pp. 2238-2255 ◽  
Author(s):  
Marcin Ciecholewski ◽  
Jakub Chochołowicz
2021 ◽  
Vol 21 (03) ◽  
pp. 2150031
Author(s):  
YANG ZHENG ◽  
ZHONGPING CHEN ◽  
JIAKE WANG ◽  
SHU JIANG ◽  
YU LIU

Segmentation of the left ventricle in ultrasound images for viewing through different axes is a critical aspect. This paper proposes the development of novel active contour models with shape constraint to segment the left ventricle in three different axis views of the ultrasound images. The shapes observed in all the axis views of the left ventricle were not similar. According to the cardiac cycle, the valve opening in the end-diastolic phase influenced the left ventricle segmentation; hence, a shape constraint was embedded in the active contour model to keep ventricle’s shape, especially in the Apical long-axis view and Apical four-chamber view. Furthermore, for different axes views, diverse active contour models were proposed to fit each situation. The shape constraint in each function for different views exhibited a specific shape during the function iteration. In order to speed up the algorithm evolution, previous results were used for the initialization of the present active contour. We evaluated the proposed method on 57 patients with three different views: Apical long-axis view, Apical four-chamber view and Short-axis view at the papillary muscle level and obtained the Dice similarity coefficients of [Formula: see text], [Formula: see text] and [Formula: see text] and the Hausdorff distance metrics of [Formula: see text], [Formula: see text] and [Formula: see text], respectively. The qualitative and quantitative evaluations showed an advantage of our method in terms of segmentation accuracy.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 192
Author(s):  
Umer Sadiq Khan ◽  
Xingjun Zhang ◽  
Yuanqi Su

The active contour model is a comprehensive research technique used for salient object detection. Most active contour models of saliency detection are developed in the context of natural scenes, and their role with synthetic and medical images is not well investigated. Existing active contour models perform efficiently in many complexities but facing challenges on synthetic and medical images due to the limited time like, precise automatic fitted contour and expensive initialization computational cost. Our intention is detecting automatic boundary of the object without re-initialization which further in evolution drive to extract salient object. For this, we propose a simple novel derivative of a numerical solution scheme, using fast Fourier transformation (FFT) in active contour (Snake) differential equations that has two major enhancements, namely it completely avoids the approximation of expansive spatial derivatives finite differences, and the regularization scheme can be generally extended more. Second, FFT is significantly faster compared to the traditional solution in spatial domain. Finally, this model practiced Fourier-force function to fit curves naturally and extract salient objects from the background. Compared with the state-of-the-art methods, the proposed method achieves at least a 3% increase of accuracy on three diverse set of images. Moreover, it runs very fast, and the average running time of the proposed methods is about one twelfth of the baseline.


Author(s):  
Vamisdhar Entireddy ◽  
Babu K Rajesh ◽  
R Sampathkumar ◽  
Jyothirmai Gandeti ◽  
Syed Shameem ◽  
...  

2015 ◽  
Vol 27 (05) ◽  
pp. 1550047 ◽  
Author(s):  
Gaurav Sethi ◽  
B. S. Saini

Precise segmentation of abdomen diseases like tumor, cyst and stone are crucial in the design of a computer aided diagnostic system. The complexity of shapes and similarity of texture of disease with the surrounding tissues makes the segmentation of abdomen related diseases much more challenging. Thus, this paper is devoted to the segmentation of abdomen diseases using active contour models. The active contour models are formulated using the level-set method. Edge-based Distance Regularized Level Set Evolution (DRLSE) and region based Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) are used for segmentation of various abdomen diseases. These segmentation methods are applied on 60 CT images (20 images each of tumor, cyst and stone). Comparative analysis shows that edge-based active contour models are able to segment abdomen disease more accurately than region-based level set active contour model.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Guoqi Liu ◽  
Haifeng Li

Active contour models are widely used in image segmentation. In order to obtain ideal object boundary, researchers utilize various information to define new models for image segmentation. However, the models could not meet all scenes of image. In this paper, we propose a block evolution method to improve the robustness of contour evolution. A block matrix is consisted of contours of former iterations and contours of shape prior, and a nuclear norm of the matrix is a measure of the similarity of these shapes. The constraint of the nuclear norm minimization is imposed on the evolution of active contour models, which could avoid large deformation of the adjacent curves and keep the shape conformability of contour in the evolution. The shape prior can be integrated into the block evolution method, which is effective in dealing with missing features of images and noise. The proposed method can be applied to image sequence segmentation. Experiments demonstrate that the proposed method improves the robust performance of active contour models and can increase the flexibility of applications in image sequence segmentation.


Sign in / Sign up

Export Citation Format

Share Document