Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network

2020 ◽  
Vol 116 ◽  
pp. 103378 ◽  
Author(s):  
Wenjuan Cai ◽  
Yundai Chen ◽  
Jun Guo ◽  
Baoshi Han ◽  
Yajun Shi ◽  
...  
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Jacobsen ◽  
T.A Dembek ◽  
A.P Ziakos ◽  
G Kobbe ◽  
M Kollmann ◽  
...  

Abstract Background Atrial fibrillation (A-fib) is the most common arrhythmia; however, detection of A-fib is a challenge due to irregular occurrence. Purpose Evaluating feasibility and performance of a non-invasive medical wearable for detection of A-fib. Methods In the CoMMoD-A-fib trial admitted patients with a high risk for A-fib carried the wearable and an ECG Holter (control) in parallel over a period of 24 hours under not physically restricted conditions. The wearable with a tight-fit upper arm band employs a photoplethysmography (PPG) technology enabling a high sampling rate. Different algorithms (including a deep neural network) were applied to 5 min PPG datasets for detection of A-fib. Proportion of monitoring time automatically interpretable by algorithms (= interpretable time) was analyzed for influencing factors. Results In 102 inpatients (age 71.0±11.9 years; 52% male) 2306 hours of parallel recording time could be obtained; 1781 hours (77.2%) of these were automatically interpretable by an algorithm analyzing PPG derived intervals. Detection of A-Fib was possible with a sensitivity of 92.7% and specificity of 92.4% (AUC 0.96). Also during physical activity, detection of A-fib was sufficiently possible (sensitivity 90.1% and specificity 91.2%). Usage of the deep neural network improved detection of A-fib further (sensitivity 95.4% and specificity 96.2%). A higher prevalence of heart failure with reduced ejection fraction was observed in patients with a low interpretable time (p=0.080). Conclusion Detection of A-fib by means of an upper arm non-invasive medical wearable with a high resolution is reliably possible under inpatient conditions. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): Internal grant program (PhD and Dr. rer. nat. Program Biomedicine) of the Faculty of Health at Witten/Herdecke University, Germany. HELIOS Kliniken GmbH (Grant-ID 047476), Germany


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoling Wei ◽  
Jimin Li ◽  
Chenghao Zhang ◽  
Ming Liu ◽  
Peng Xiong ◽  
...  

In this paper, R wave peak interval independent atrial fibrillation detection algorithm is proposed based on the analysis of the synchronization feature of the electrocardiogram signal by a deep neural network. Firstly, the synchronization feature of each heartbeat of the electrocardiogram signal is constructed by a Recurrence Complex Network. Then, a convolution neural network is used to detect atrial fibrillation by analyzing the eigenvalues of the Recurrence Complex Network. Finally, a voting algorithm is developed to improve the performance of the beat-wise atrial fibrillation detection. The MIT-BIH atrial fibrillation database is used to evaluate the performance of the proposed method. Experimental results show that the sensitivity, specificity, and accuracy of the algorithm can achieve 94.28%, 94.91%, and 94.59%, respectively. Remarkably, the proposed method was more effective than the traditional algorithms to the problem of individual variation in the atrial fibrillation detection.


2020 ◽  
Vol 44 (6) ◽  
Author(s):  
S. K. Ghosh ◽  
R. K. Tripathy ◽  
Mario R. A. Paternina ◽  
Juan J. Arrieta ◽  
Alejandro Zamora-Mendez ◽  
...  

Author(s):  
Viktor Kifer ◽  
Natalia Zagorodna ◽  
Olena Hevko

In this paper, we present our research which confirms the suitability of the convolutional neural network usage for the classification of single-lead ECG recordings. The proposed method was designed for classifying normal sinus rhythm, atrial fibrillation (AF), non-AF related other abnormal heart rhythms and noisy signals. The method combines manually selected features with the features learned by the deep neural network. The Physionet Challenge 2017 dataset of over 8500 ECG recordings was used for the model training and validation. The trained model reaches an average F1-score 0.71 in classifying normal sinus rhythm, AF and other rhythms respectively.


2021 ◽  
Author(s):  
Shubo Yang ◽  
Yang Luo ◽  
Wang Miao ◽  
Changhao Ge ◽  
Wenjian Sun ◽  
...  

With the proliferation of Unmanned Aerial Vehicles (UAVs) to provide diverse critical services, the accurate detection of these small devices and the efficient classification of their flight modes are of paramount importance. In this paper, we propose a joint Feature Engineering Generator (FEG) and Multi-Channel Deep Neural Network (MC-DNN) approach.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1678
Author(s):  
Shubo Yang ◽  
Yang Luo ◽  
Wang Miao ◽  
Changhao Ge ◽  
Wenjian Sun ◽  
...  

With the proliferation of Unmanned Aerial Vehicles (UAVs) to provide diverse critical services, such as surveillance, disaster management, and medicine delivery, the accurate detection of these small devices and the efficient classification of their flight modes are of paramount importance to guarantee their safe operation in our sky. Among the existing approaches, Radio Frequency (RF) based methods are less affected by complex environmental factors. The similarities between UAV RF signals and the diversity of frequency components make accurate detection and classification a particularly difficult task. To bridge this gap, we propose a joint Feature Engineering Generator (FEG) and Multi-Channel Deep Neural Network (MC-DNN) approach. Specifically, in FEG, data truncation and normalization separate different frequency components, the moving average filter reduces the outliers in the RF signal, and the concatenation fully exploits the details of the dataset. In addition, the multi-channel input in MC-DNN separates multiple frequency components and reduces the interference between them. A novel dataset that contains ten categories of RF signals from three types of UAVs is used to verify the effectiveness. Experiments show that the proposed method outperforms the state-of-the-art UAV detection and classification approaches in terms of 98.4% and F1 score of 98.3%.


Sign in / Sign up

Export Citation Format

Share Document