A novel ear elements segmentation algorithm on depth map images

2021 ◽  
Vol 129 ◽  
pp. 104157
Author(s):  
Elisa Mussi ◽  
Michaela Servi ◽  
Flavio Facchini ◽  
Rocco Furferi ◽  
Lapo Governi ◽  
...  
2013 ◽  
Vol 1 (1) ◽  
pp. 13
Author(s):  
Javaria Manzoor Shaikh ◽  
JaeSeung Park

Usually elongated hospitalization is experienced byBurn patients, and the precise forecast of the placement of patientaccording to the healing acceleration has significant consequenceon healthcare supply administration. Substantial amount ofevidence suggest that sun light is essential to burns healing andcould be exceptionally beneficial for burned patients andworkforce in healthcare building. Satisfactory UV sunlight isfundamental for a calculated amount of burn to heal; this delicaterather complex matrix is achieved by applying patternclassification for the first time on the space syntax map of the floorplan and Browder chart of the burned patient. On the basis of thedata determined from this specific healthcare learning technique,nurse can decide the location of the patient on the floor plan, hencepatient safety first is the priority in the routine tasks by staff inhealthcare settings. Whereas insufficient UV light and vitamin Dcan retard healing process, hence this experiment focuses onmachine learning design in which pattern recognition andtechnology supports patient safety as our primary goal. In thisexperiment we lowered the adverse events from 2012- 2013, andnearly missed errors and prevented medical deaths up to 50%lower, as compared to the data of 2005- 2012 before this techniquewas incorporated.In this research paper, three distinctive phases of clinicalsituations are considered—primarily: admission, secondly: acute,and tertiary: post-treatment according to the burn pattern andhealing rate—and be validated by capable AI- origin forecastingtechniques to hypothesis placement prediction models for eachclinical stage with varying percentage of burn i.e. superficialwound, partial thickness or full thickness deep burn. Conclusivelywe proved that the depth of burn is directly proportionate to thedepth of patient’s placement in terms of window distance. Ourfindings support the hypothesis that the windowed wall is mosthealing wall, here fundamental suggestion is support vectormachines: which is most advantageous hyper plane for linearlydivisible patterns for the burns depth as well as the depth map isused.


Author(s):  
Minghui WANG ◽  
Xun HE ◽  
Xin JIN ◽  
Satoshi GOTO
Keyword(s):  

2018 ◽  
Author(s):  
Pallabi Ghosh ◽  
Domenic Forte ◽  
Damon L. Woodard ◽  
Rajat Subhra Chakraborty

Abstract Counterfeit electronics constitute a fast-growing threat to global supply chains as well as national security. With rapid globalization, the supply chain is growing more and more complex with components coming from a diverse set of suppliers. Counterfeiters are taking advantage of this complexity and replacing original parts with fake ones. Moreover, counterfeit integrated circuits (ICs) may contain circuit modifications that cause security breaches. Out of all types of counterfeit ICs, recycled and remarked ICs are the most common. Over the past few years, a plethora of counterfeit IC detection methods have been created; however, most of these methods are manual and require highly-skilled subject matter experts (SME). In this paper, an automated bent and corroded pin detection methodology using image processing is proposed to identify recycled ICs. Here, depth map of images acquired using an optical microscope are used to detect bent pins, and segmented side view pin images are used to detect corroded pins.


Sign in / Sign up

Export Citation Format

Share Document