Numerical solution of tidal currents at marine waterways using wet and dry technique on Galerkin finite volume algorithm

2009 ◽  
Vol 38 (10) ◽  
pp. 1876-1886 ◽  
Author(s):  
Saeed-Reza Sabbagh-Yazdi ◽  
Mohammad Zounemat-Kermani
2020 ◽  
Vol 50 (3) ◽  
pp. 287-302
Author(s):  
Róbert ČUNDERLÍK ◽  
Matej MEDĽA ◽  
Karol MIKULA

The paper presents local quasigeoid modelling in Slovakia using the finite volume method (FVM). FVM is used to solve numerically the fixed gravimetric boundary value problem (FGBVP) on a 3D unstructured mesh created above the real Earth's surface. Terrestrial gravimetric measurements as input data represent the oblique derivative boundary conditions on the Earth's topography. To handle such oblique derivative problem, its tangential components are considered as surface advection terms regularized by a surface diffusion. The FVM numerical solution is fixed to the GOCE-based satellite-only geopotential model on the upper boundary at the altitude of 230 km. The horizontal resolution of the 3D computational domain is 0.002 × 0.002 deg and its discretization in the radial direction is changing with altitude. The created unstructured 3D mesh of finite volumes consists of 454,577,577 unknowns. The FVM numerical solution of FGBVP on such a detailed mesh leads to large-scale parallel computations requiring 245 GB of internal memory. It results in the disturbing potential obtained in the whole 3D computational domain. Its values on the discretized Earth's surface are transformed into the local quasigeoid model that is tested at 404 GNSS/levelling benchmarks. The standard deviation of residuals is 2.8 cm and decreases to 2.6 cm after removing 9 identified outliers. It indicates high accuracy of the obtained FVM-based local quasigeoid model in Slovakia.


2018 ◽  
Vol 340 ◽  
pp. 684-727 ◽  
Author(s):  
Jibran Haider ◽  
Chun Hean Lee ◽  
Antonio J. Gil ◽  
Antonio Huerta ◽  
Javier Bonet

2016 ◽  
Vol 821 ◽  
pp. 16-22 ◽  
Author(s):  
Jiří Fürst

A numerical code for calculation of leakage flowand rotordynamic coefficients of labyrinth seals has beendeveloped. The code is based on the solution of Reynolds-averagedNavier-Stokes equations combined with a two-equation turbulencemodel. The numerical solution is achieved with finite volume methodand the rotordynamic coefficients are evaluated from severalsimulations with different rotor precessions. The solution iscompared to single control volume based bulk flow method[Williams, 1998] and to the experimental results for look-throughlabyrinth seal [Schettel, 2004].


2013 ◽  
Vol 392 ◽  
pp. 100-104 ◽  
Author(s):  
Fareed Ahmed ◽  
Faheem Ahmed ◽  
Yong Yang

In this paper we present a robust, high order method for numerical solution of multidimensional compressible inviscid flow equations. Our scheme is based on Nodal Discontinuous Galerkin Finite Element Method (NDG-FEM). This method utilizes the favorable features of Finite Volume Method (FVM) and Finite Element Method (FEM). In this method, space discretization is carried out by finite element discontinuous approximations. The resulting semi discrete differential equations were solved using explicit Runge-Kutta (ERK) method. In order to compute fluxes at element interfaces, we have used Roe Approximate scheme. In this article, we demonstrate the use of exponential filter to remove Gibbs oscillations near the shock waves. Numerical predictions for two dimensional compressible fluid flows are presented here. The solution was obtained with overall order of accuracy of 3. The numerical results obtained are compared with experimental and finite volume method results.


Sign in / Sign up

Export Citation Format

Share Document