scholarly journals Coupled analysis of unsteady aerodynamics and vehicle motion of a road vehicle in windy conditions

2013 ◽  
Vol 80 ◽  
pp. 1-9 ◽  
Author(s):  
Takuji Nakashima ◽  
Makoto Tsubokura ◽  
Mariano Vázquez ◽  
Herbert Owen ◽  
Yasuaki Doi
Author(s):  
Jun Liu ◽  
Zhengqi Gu ◽  
Taiming Huang ◽  
Shuya Li ◽  
Ledian Zheng ◽  
...  

The severe additional aerodynamic loads that are generated on a small car when overtaking a coach have an adverse effect on the car handling stability and its safety. In this article, a two-way coupling of the unsteady aerodynamics and multi-body dynamics is performed in order to study the mutual interactions of a car in an overtaking maneuver with a coach. The unsteady aerodynamic interactions are obtained by using SST (Menter) K-Omega Detached Eddy Simulation and overset mesh technology. The aerodynamics couple the multi-body dynamics, taking into account the effects of the transverse spacing and the cross winds. To validate the necessity of the two-way coupling method, a one-way coupling of the aerodynamics to the vehicle motion is also conducted. Finally, by comparing the aerodynamic loads and the dynamic response of the overtaking car in different overtaking maneuvers between one- and two-way coupling, the results show that it should be considered with two-way coupling analyses of the car while overtaking a coach, particularly under the severe conditions of a lower transverse spacing or the crosswinds.


2016 ◽  
Vol 82 (835) ◽  
pp. 15-00675-15-00675 ◽  
Author(s):  
Jun IKEDA ◽  
Makoto TSUBOKURA ◽  
Yusuke NAKAE

1982 ◽  
Vol 26 (10) ◽  
pp. 896-900 ◽  
Author(s):  
J. R. Duncan ◽  
E. L. Wegscheid

A new human factors research laboratory has been developed to provide reliable human-performance data for the design of improved off-road vehicle operator workstations. The principal research tool within this laboratory is a vehicle operations simulator. The simulator consists of a hydraulically driven platform upon which a vehicle operator's enclosure or workstation can be mounted. Under computer control, the simulator is capable of motion with six degrees-of-freedom. With this capability, the simulator's motion can be programmed to reproduce operator workstation vibration experienced in operational field environments. Both field recorded data and mathematical simulations of existing and proposed vehicles can be used to command the simulator motion. In addition to simulating vehicle motion, the simulator is capable of producing realistic control and monitoring tasks for the operator, as well as operator enclosure environmental conditions. This paper describes the research objectives for which the simulator was built, the specifications used in the design of the vehicle motion simulator system, the hardware selected in implementing that design, and the computer control used to simulate both field and artificial “ride” histories.


Author(s):  
Takuji Nakashima ◽  
Makoto Tsubokura ◽  
Takeshi Ikenaga ◽  
Kozo Kitoh ◽  
Yasuaki Doi

In the present study, unsteady aerodynamic forces acting on a simplified heavy duty truck in strong wind gust and their effects on the truck’s motion were investigated by using a coupled analysis. Unsteady fluid dynamics simulation was applied to numerically reproduce unsteady aerodynamic forces acting on the truck under sudden crosswind condition. Taking account of vehicle’s motion, moving boundary techniques were introduced. Motions of the truck were simulated by a vehicle dynamics simulation including a driver’s reaction. The equations of motion of the truck in longitudinal, lateral, and yaw-rotational directions were numerically solved. These aerodynamics and vehicle dynamics simulations were coupled by exchanging the aerodynamic forces and the vehicle’s motion. In order to investigate effects of the unsteady vehicle aerodynamics on the vehicle’s motion, conventional analysis of the vehicle’s motion using quasi-steady aerodynamic forces and one-way coupled analysis with fixed vehicle attitude were also conducted. The numerical results of these simulations were compared with each other, and the effects of the two kinds of unsteady aerodynamics were discussed separately and totally. In the sudden crosswind condition, the unsteady aerodynamics effected significantly on the truck’s motion. An effect of transient aerodynamics as the truck ran into a sudden crosswind was greater than an effect of unsteady aerodynamics caused by unsteady vehicle’s motion, while both of the effects showed significance.


2013 ◽  
Author(s):  
Takuji Nakashima ◽  
Yoshihiro Okada ◽  
Takahide Nouzawa ◽  
Makoto Tsubokura

Author(s):  
Hirotaka Ishioka ◽  
Shoya Ota ◽  
Kosuke Nakasato ◽  
Keiji Onishi ◽  
Makoto Tsubokura

Recently, unsteady aerodynamics has been drawing many attention because it is becoming clear that unsteady aerodynamics have a big effect on running stability, safety and ride comfort of vehicles. In order to estimate unsteady aerodynamics, it is necessary to reproduce the actual running condition including an atmospheric disturbance and vehicle motion. However, it is difficult to investigate the effect of unsteady aerodynamics in the road test because it has a lot of errors in measurement. In this study, a coupled simulation method between the 6DoF motion of a vehicle and aerodynamics was developed for these problems. Large Eddy Simulation (LES) was used to estimate the aerodynamics, and the motion equations of a vehicle was used to estimate vehicle motion. Vehicle motion in aerodynamic simulation was reproduced by using Arbitrary Lagrangian-Eulerian (ALE) method. In addition, sliding mesh method was used to reproduce overtaking and passing motions of two vehicles. By using the methods, aerodynamics and vehicle dynamics simulations are treated interactively (2-way) by exchanging each result at each time step. The 2-way results were compared with the 1-way coupled simulation estimating vehicle motion from aerodynamics results posteriori to investigate how vehicle’s motion itself further affects its aerodynamics during the pass-by and overtaking motions. Our main focus is, by using this method, to study the effect of unsteady aerodynamics on the running stability of a vehicle. The results of 1-way and 2-way coupling analysis showed difference with respect to behavior of a vehicle. It is believed that such differences result in the different aerodynamic forces and moments, which is caused by the vehicle’s posture changes in the 2-way coupling simulation.


2018 ◽  
Vol 245 ◽  
pp. 17003
Author(s):  
Yan Arlauskas ◽  
Yuri Molev ◽  
Valentina Obrezkova ◽  
Valery Naumov

The article presents the determination of oscillation parameters of the rotor-screw vehicle during motion on rough terrain. The study presented the dynamics of off-road vehicle movement. The dependence of the vehicle vibration characteristics on the mover geometry and suspension parameters was found. The experiment with the vehicle was performed. Analysis of the research results allows to conclude that the use of the suspension increases speed of the rotary-screw vehicle by 1.5 - 2.5 times. The developed model and obtained results will be useful in design of all-terrain vehicles.


Sign in / Sign up

Export Citation Format

Share Document