Kinematic hardening predictions of large stress-reversals in 3-D test on loose sand

2009 ◽  
Vol 36 (8) ◽  
pp. 1285-1297 ◽  
Author(s):  
Poul V. Lade ◽  
Suresh K. Gutta ◽  
Jerry A. Yamamuro
1984 ◽  
Vol 106 (4) ◽  
pp. 397-404 ◽  
Author(s):  
J. L. Ding ◽  
W. N. Findley

Experiments on creep of 2618-T61 aluminum under nonproportional loading steps combined with shear stress reversals, are reported. Compared to previous work, the stress levels, under which nonproportional loading steps were performed, were relatively low in the current work. In addition to the features of the material responses under nonproportional loadings such as anisotropy induced by creep strain, synergistic effects on creep and creep recovery, more findings related to stress reversals were a cyclic softening effect. The effect of shear stress reversal on tension creep was not significant because of the low stress levels. Isotropic strain hardening, kinematic hardening and independent strain hardening theories were evaluated. An auxiliary rule was developed for the isotropic and independent strain hardening approaches to extend the capabilities of the theories. Creep under stress reversals predicted by the kinematic flow rule was well described at low stresses but was too exagerated at high stress levels.


2020 ◽  
Vol 36 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Daniele Barbera ◽  
Haofeng Chen

ABSTRACTStructural integrity plays an important role in any industrial activity, due to its capability of assessing complex systems against sudden and unpredicted failures. The work here presented investigates an unexpected new mechanism occurring in structures subjected to monotonic and cyclic loading at high temperature creep condition. An unexpected accumulation of plastic strain is observed to occur, within the high-temperature creep dwell. This phenomenon has been observed during several full inelastic finite element analyses. In order to understand which parameters make possible such behaviour, an extensive numerical study has been undertaken on two different notched bars. The notched bar has been selected due to its capability of representing a multiaxial stress state, which is a practical situation in real components. Two numerical examples consisting of an axisymmetric v-notch bar and a semi-circular notched bar are considered, in order to investigate different notches severity. Two material models have been considered for the plastic response, which is modelled by both Elastic-Perfectly Plastic and Armstrong-Frederick kinematic hardening material models. The high-temperature creep behaviour is introduced using the time hardening law. To study the problem several results are presented, as the effect of the material model on the plastic strain accumulation, the effect of the notch severity and the mesh element type and sensitivity. All the findings further confirm that the phenomenon observed is not an artefact but a real mechanism, which needs to be considered when assessing off-design condition. Moreover, it might be extremely dangerous if the cyclic loading condition occurs at such a high loading level.


1990 ◽  
Vol 57 (2) ◽  
pp. 298-306 ◽  
Author(s):  
K. W. Neale ◽  
S. C. Shrivastava

The inelastic behavior of solid circular bars twisted to arbitrarily large strains is considered. Various phenomenological constitutive laws currently employed to model finite strain inelastic behavior are shown to lead to closed-form analytical solutions for torsion. These include rate-independent elastic-plastic isotropic hardening J2 flow theory of plasticity, various kinematic hardening models of flow theory, and both hypoelastic and hyperelastic formulations of J2 deformation theory. Certain rate-dependent inelastic laws, including creep and strain-rate sensitivity models, also permit the development of closed-form solutions. The derivation of these solutions is presented as well as numerous applications to a wide variety of time-independent and rate-dependent plastic constitutive laws.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1166
Author(s):  
Stanislav Strashnov ◽  
Sergei Alexandrov ◽  
Lihui Lang

The present paper provides a semianalytic solution for finite plane strain bending under tension of an incompressible elastic/plastic sheet using a material model that combines isotropic and kinematic hardening. A numerical treatment is only necessary to solve transcendental equations and evaluate ordinary integrals. An arbitrary function of the equivalent plastic strain controls isotropic hardening, and Prager’s law describes kinematic hardening. In general, the sheet consists of one elastic and two plastic regions. The solution is valid if the size of each plastic region increases. Parameters involved in the constitutive equations determine which of the plastic regions reaches its maximum size. The thickness of the elastic region is quite narrow when the present solution breaks down. Elastic unloading is also considered. A numerical example illustrates the general solution assuming that the tensile force is given, including pure bending as a particular case. This numerical solution demonstrates a significant effect of the parameter involved in Prager’s law on the bending moment and the distribution of stresses at loading, but a small effect on the distribution of residual stresses after unloading. This parameter also affects the range of validity of the solution that predicts purely elastic unloading.


Author(s):  
Marcus S Dersch ◽  
Matheus Trizotto ◽  
J Riley Edwards ◽  
Arthur de Oliveira

To address a recent challenge related to broken spikes in premium elastic fastening systems that have led to at least ten derailments and require manual walking inspections as well as build upon mechanistic-empirical (M-E) design principles for future fastening system component design, this paper quantifies the vertical, lateral, and longitudinal fastening system loads under revenue service traffic in a curve that has regularly experienced spike fastener fatigue failures. Previous data has indicated that the high rail of Track 3 experienced the most failures at this location. The data from this investigation sheds light into why failures are more predominant at this location than others and how the vertical, lateral, and longitudinal loads cannot be considered independently. Specifically, while the magnitude of the applied loading was the lowest on the high rail of Track 3, the threshold for failure was also the lowest given the operations at this location led to unloading of the high rail, thus indirectly highlighting the importance of friction within a fastening system. The data also show the high rail of Track 3 was subjected to the highest L/V load ratios and was an outlier in the typical lateral load reversals applied likely leading to spike stress reversals and thus a shorter fatigue life. Finally, based upon the data, it is recommended that to mitigate spike failures, as well as similar fastener challenges in other track types (e.g. rail seat deterioration, etc.) railroads should ensure trains operate close to the balance speed and use fastening system that transfer loads through friction. This study also provides novel data for M-E design of fastening systems.


Sign in / Sign up

Export Citation Format

Share Document