Finite element analysis and design method of geosynthetic-reinforced soil foundation subjected to normal fault movement

2021 ◽  
Vol 139 ◽  
pp. 104412
Author(s):  
Jung Chiang ◽  
Kuo-Hsin Yang ◽  
Yu-Hsuan Chan ◽  
Chung-Lu Yuan
2020 ◽  
Vol 57 (2) ◽  
pp. 277-293 ◽  
Author(s):  
Mahmoud G. Hussein ◽  
Mohamed A. Meguid

Soil reinforcement has rapidly become one of the most common soil improvement techniques used in geotechnical engineering. Understanding the behavior of a geogrid under pullout loading is essential for the analysis and design of reinforced soil systems. The overall behavior of reinforced soils is generally dependent on the properties of the geogrid material, the backfill soil, and the interface condition. Modeling the three-dimensional aspects of soil–geogrid interaction under pullout loading condition is numerically challenging and requires special consideration of the different modes of resistance that contribute to the pullout capacity of the geogrid reinforcement. This study describes the results of a three-dimensional finite-element analysis that has been developed to investigate the behavior of a biaxial geogrid embedded in granular backfill material and subjected to pullout loading. The modeling approach considers the noncontinuous nature of the geogrid geometry and the elastoplastic response of the geogrid material. Model validation is performed by simulating laboratory-size pullout test and comparing the experimental data with the analytical as well as numerically calculated results. The detailed behavior of the geogrid and the surrounding backfill is investigated using the proposed numerical approach. Conclusions are made to highlight the suitability of this technique for analyzing similar soil–structure interaction problems.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


Sign in / Sign up

Export Citation Format

Share Document