Web-based rapid prototyping and manufacturing systems: A review

2009 ◽  
Vol 60 (9) ◽  
pp. 643-656 ◽  
Author(s):  
Hongbo Lan
Author(s):  
Hyung-Jung Kim ◽  
Won-Shik Chu ◽  
Hyuk-Jin Kang ◽  
Sung-Hoon Ahn ◽  
Dong-Soo Kim ◽  
...  

In this paper, web-based design and manufacturing systems are compared with a commercial CAD/CAM system from the point of usability. The web-based systems included in this study were MIcro Machining System (MIMS) and SmartFab. In the MIMS architecture, a 3D model in STL format was read via a web browser, sent to the web server for toolpath planning, and NC codes were generated to be fed back to the designer through the web connection. In the SmartFab system, SolidWorks was used as the design interface with provided modified menus for micro machining. These additional menus were created by SolidWorks API that also provided web-based links to the toolpath planner. In the commercial CAD/CAM case, without using any web connection, SolidWorks or CATIA was used for design, and PowerMill was used as a CAM tool. For each design and manufacturing system, accessibility, user-friendliness, toolpath-reliability, and processing time were compared. Total 91 students tested these systems in undergraduate CAD class, and the feedback showed better performance of the web-based system in accessibility, user-friendliness, and processing time. However, reliability of the web-based system showed necessity of further improvement.


Author(s):  
Juan Carlos Campos Rubio ◽  
Eduardo Romeiro Filho

This chapter presents the rapid prototyping and manufacturing concepts applied as means to reducing time between jewellery designs and manufacturing process. Different processes on jewellery modelling production are presented. Nowadays, the use of technologies as CAD/CAM - Computer Aided Design and Manufacturing in high production companies are very disseminated. However, the implementation of these resources at the design and manufacturing processes of jewels and fashion accessories, in small and medium size businesses, is still insipient. As reference, is presented the situation observed in small and medium companies located in Minas Gerais, Brazil.


2017 ◽  
Vol 28 (5) ◽  
pp. 655-685 ◽  
Author(s):  
Christen Rose-Anderssen ◽  
James Baldwin ◽  
Keith Ridgway

Purpose The purpose of this paper is to critically evaluate the state of the art of applications of organisational systematics and manufacturing cladistics in terms of strengths and weaknesses and introduce new generic cladistic and hierarchical classifications of discrete manufacturing systems. These classifications are the basis for a practical web-based expert system and diagnostic benchmarking tool. Design/methodology/approach There were two stages for the research methods, with eight re-iterative steps: one for theory building, using secondary and observational data, producing conceptual classifications; the second stage for theory testing and theory development, using quantitative data from 153 companies and 510 manufacturing systems, producing the final factual cladogram. Evolutionary relationships between 53 candidate manufacturing systems, using 13 characters with 84 states, are hypothesised and presented diagrammatically. The manufacturing systems are also organised in a hierarchical classification with 13 genera, 6 families and 3 orders under one class of discrete manufacturing. Findings This work addressed several weaknesses of current manufacturing cladistic classifications which include the lack of an explicit out-group comparison, limited conceptual cladogram development, limited use of characters and that previous classifications are specific to sectors. In order to correct these limitations, the paper first expands on previous work by producing a more generic manufacturing system classification. Second, it describes a novel web-based expert system for the practical application of the discrete manufacturing system. Practical implications The classifications form the basis for a practical web-based expert system and diagnostic benchmarking tool, but also have a novel use in an educational context as it simplifies and relationally organises extant manufacturing system knowledge. Originality/value The research employed a novel re-iterative methodology for both theory building, using observational data, producing the conceptual classification, and through theory testing developing the final factual cladogram that forms the basis for the practical web-based expert system and diagnostic tool.


Sign in / Sign up

Export Citation Format

Share Document