Interfacial strength and debonding mechanism between aerogel-spun carbon nanotube yarn and polyphenylene sulfide

Author(s):  
Yiqin Shao ◽  
Fujun Xu ◽  
Wei Li ◽  
Kun Zhang ◽  
Chunyang Zhang ◽  
...  
2003 ◽  
Vol 82 (23) ◽  
pp. 4140-4142 ◽  
Author(s):  
Asa H. Barber ◽  
Sidney R. Cohen ◽  
H. Daniel Wagner

RSC Advances ◽  
2018 ◽  
Vol 8 (58) ◽  
pp. 33506-33515 ◽  
Author(s):  
Kiho Kim ◽  
Hyunwoo Oh ◽  
Jooheon Kim

Boron nitride nanosheet (BNNS)/multi-walled carbon nanotube (MWCNT) hybrid particles were synthesized for use as a conductive filler for epoxy and polyphenylene sulfide (PPS).


2006 ◽  
Vol 21 (6) ◽  
pp. 1537-1542 ◽  
Author(s):  
Go Yamamoto ◽  
Yoshinori Sato ◽  
Toru Takahashi ◽  
Mamoru Omori ◽  
Toshiyuki Hashida ◽  
...  

Binder-free macroscopic single-walled carbon nanotube (SWCNT) solids were prepared by spark plasma sintering (SPS) of purified SWCNTs. The effects of processing temperatures and pressures on the mechanical properties of the SWCNT solids and structural change of SWCNTs in the SWCNT solids were investigated. Transmission electron microscope observation of the SWCNT solids revealed thatthe high-temperature treatment has transformed some part of the SWCNTs into amorphous-like structure and the rest of the SWCNTs remained buried into the above structure. The mechanical properties of the SWCNT solids increased with the increasing processing temperature, probably reflecting the improvement of interfacial strength between SWCNTs and disordered structure of carbon due to the spark plasma generated in the SPS process.


2017 ◽  
Vol 31 (11) ◽  
pp. 1545-1560 ◽  
Author(s):  
Rui Yang ◽  
Zhengtao Su ◽  
Shan Wang ◽  
Yanfen Zhao ◽  
Jiao Shi

Polyphenylene sulfide (PPS)/multiwalled carbon nanotube (MWCNT) composites were prepared by melt blending and injection molding. The nonisothermal crystallization behavior, morphology, and mechanical properties of the nanocomposites were systematically investigated as a function of MWCNT content. For nonisothermal process, the presence of MWCNTs possesses both acceleration and retardation effect on the crystallization of PPS without affecting the ultimate degree of crystallinity. Due to the interfacial interaction between MWCNTs and PPS, the MWCNTs can be uniformly dispersed in PPS. The interfacial crystallization of PPS on the surface of nanotubes was observed by scanning electron microscopy and transmission electron microscopy. A reinforcing effect of MWCNTs on the mechanical properties of PPS is found, which is considered to be relevant with the uniformly dispersed MWCNTs and the interfacial crystallization.


Author(s):  
Lingyun Jiang ◽  
Chandra Nath ◽  
Johnson Samuel ◽  
Shiv G. Kapoor

The failure mechanisms encountered during the machining of carbon nanotube (CNT) polymer composites are primarily governed by the strength of the CNT–polymer interface. Therefore, the interface should be explicitly modeled in microstructure-level machining simulations for these composites. One way of effectively capturing the behavior of this interface is by the use of a cohesive zone model (CZM) that is characterized by two parameters, viz., interfacial strength and interfacial fracture energy. The objective of this study is to estimate these two CZM parameters of the interface using an inverse iterative finite element (FE) approach. A microstructure-level 3D FE model for nanoindentation simulation has been developed where the composite microstructure is modeled using three distinct phases, viz., the CNT, the polymer, and the interface. The unknown CZM parameters of the interface are then determined by minimizing the root mean square (RMS) error between the simulated and the experimental nanoindentation load–displacement curves for a 2 wt. % CNT–polyvinyl alcohol (PVA) composite sample at room temperature and quasi-static strain state of up to 0.04 s−1, and then validated using the 1 wt. % and 4 wt. % CNT–PVA composites. The results indicate that for well-dispersed and aligned CNT–PVA composites, the CZM parameters of the interface are independent of the CNT loading in the weight fraction range of 1–4%.


Sign in / Sign up

Export Citation Format

Share Document