Estimating the Cohesive Zone Model Parameters of Carbon Nanotube–Polymer Interface for Machining Simulations

Author(s):  
Lingyun Jiang ◽  
Chandra Nath ◽  
Johnson Samuel ◽  
Shiv G. Kapoor

The failure mechanisms encountered during the machining of carbon nanotube (CNT) polymer composites are primarily governed by the strength of the CNT–polymer interface. Therefore, the interface should be explicitly modeled in microstructure-level machining simulations for these composites. One way of effectively capturing the behavior of this interface is by the use of a cohesive zone model (CZM) that is characterized by two parameters, viz., interfacial strength and interfacial fracture energy. The objective of this study is to estimate these two CZM parameters of the interface using an inverse iterative finite element (FE) approach. A microstructure-level 3D FE model for nanoindentation simulation has been developed where the composite microstructure is modeled using three distinct phases, viz., the CNT, the polymer, and the interface. The unknown CZM parameters of the interface are then determined by minimizing the root mean square (RMS) error between the simulated and the experimental nanoindentation load–displacement curves for a 2 wt. % CNT–polyvinyl alcohol (PVA) composite sample at room temperature and quasi-static strain state of up to 0.04 s−1, and then validated using the 1 wt. % and 4 wt. % CNT–PVA composites. The results indicate that for well-dispersed and aligned CNT–PVA composites, the CZM parameters of the interface are independent of the CNT loading in the weight fraction range of 1–4%.

Author(s):  
Lingyun Jiang ◽  
Chandra Nath ◽  
Johnson Samuel ◽  
Shiv G. Kapoor

During machining of carbon nanotube (CNT)-polymer composites, the failure of the polymer elements occurs at the CNT-polymer interface. The interfacial behavior that can be represented by a cohesive zone model (CZM) is mainly influenced by two parameters, viz., interfacial strength and fracture energy. The objective of this study is to estimate these two specific CZM parameters using an inverse finite element (FE) simulation approach that works based on an iterative error minimization procedure. Nanoindentation tests have been conducted on a CNT-polyvinyl alcohol (PVA) composite sample containing 4 wt% multi-walled nanotubes (MWNTs). A 2D axisymmetric FE model of nanoindentation has been developed. This micro-structure based model considers the CNT, the PVA, and the cohesive zone of interface as three individual phases. The unknown interfacial parameters are determined by minimizing the error between the simulation load-displacement curve and the experimental results. The interfacial strength and the fracture energy at the CNT-PVA interface are estimated to be approximately 40 MPa and 16e−3 J/m2, respectively. This approach provides a convenient framework to understand the role of the CZM parameters at the interface between the CNT and polymer matrix.


Author(s):  
Vikas Chaudhari ◽  
D. M. Kulkarni ◽  
Shivam Rathi ◽  
Akshay Sancheti ◽  
Swadesh Dixit

Present work deals with the investigation of fracture toughness and modeling parameters need in FEA application for steel use in shipbuilding structure. The investigated steel was 12.5mm thick low carbon high strength steel. Two types of tests were performed, tensile test and fracture test to evaluate mechanical properties and fracture toughness respectively. Cohesive zone model (CZM) was used because it is very computer effective and requires only two parameters, which can be determined in experiments with relative ease. Cohesive zone model with trapezoidal traction law found suitable for the investigated steel. To simulate CZM, bulk section with plane stress elements and bulk section with plane stress with plane strain core scheme are found suitable however bulk section with plane stress with plane strain core scheme gives accurate numerical results.


2016 ◽  
Vol 43 (3) ◽  
pp. 226-232 ◽  
Author(s):  
S. Pirmohammad ◽  
H. Khoramishad ◽  
M.R. Ayatollahi

In this paper, the effects of the main asphalt concrete characteristics including the binder type and the air void percentage on the cohesive zone model (CZM) parameters were studied. Experimental tests were conducted on semi-circular bend (SCB) specimens made of asphalt concrete and the fracture behavior was simulated using a proper CZM. The CZM parameters of various hot mix asphalt (HMA) mixtures were determined using the SCB experimental results. Five types of HMA mixtures were tested and modeled to consider the effects of binder type and air void percentage on the CZM parameters. The results showed that as the binder in HMA mixture softened, the cohesive energy strength increased, whereas enhancing the air void percentage led to reduction of the cohesive energy and strength values. Among the studied HMA mixtures, the highest values of CZM parameters were found for the HMA mixture containing a copolymer called styrene-butadiene-styrene.


2018 ◽  
Author(s):  
M. H. R. de Oliveira ◽  
A. F. Ávila ◽  
R. R. Chaves ◽  
H. Nascimento Júnior ◽  
F. D. Passos

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Rugerri Toni Liong ◽  
Carsten Proppe

The breathing mechanism of a transversely cracked shaft and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. The presence of a crack reduces the stiffness of the rotor system and introduces a stiffness variation during the revolution of the shaft. Here, 3D finite element (FE) model and multibody simulation (MBS) are introduced to predict and to analyse the breathing mechanism on a transverse cracked shaft. It is based on a cohesive zone model (CZM) instead of linear-elastic fracture mechanics (LEFM). First, the elastic cracked shaft is modelled by 3D FE. As a second step, the 3D FE model of the shaft is transferred into an MBS model in order to analyze the dynamic loads, due to the crack, and the inertia force acting during rotation at different rotating speeds. Finally, the vibration responses in the centroid of the shaft obtained from MBS have been exported into FE model in order to observe the breathing mechanism. A bilinear crack closure model is proposed. The accuracy of the bilinear crack closure model and the solution techniques have been demonstrated by a comparison with the corresponding results of previous publications.


2005 ◽  
Vol 127 (2) ◽  
pp. 222-232 ◽  
Author(s):  
S. Namilae ◽  
N. Chandra

In order to fully harness the outstanding mechanical properties of carbon nanotubes (CNT) as fiber reinforcements, it is essential to understand the nature of load transfer in the fiber matrix interfacial region of CNT-based composites. With controlled experimentation on nanoscale interfaces far off, molecular dynamics (MD) is evolving as the primary method to model these systems and processes. While MD is capable of simulating atomistic behavior in a deterministic manner, the extremely small length and time scales modeled by MD necessitate multiscale approaches. To study the atomic scale interface effects on composite behavior, we herein develop a hierarchical multiscale methodology linking molecular dynamics and the finite element method through atomically informed cohesive zone model parameters to represent interfaces. Motivated by the successful application of pullout tests in conventional composites, we simulate fiber pullout tests of carbon nanotubes in a given matrix using MD. The results of the pullout simulations are then used to evaluate cohesive zone model parameters. These cohesive zone models (CZM) are then used in a finite element setting to study the macroscopic mechanical response of the composites. Thus, the method suggested explicitly accounts for the behavior of nanoscale interfaces existing between the matrix and CNT. The developed methodology is used to study the effect of interface strength on stiffness of the CNT-based composite.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Huan Li ◽  
Jinshan Li ◽  
Huang Yuan

A cyclic cohesive zone model is applied to characterize the fatigue crack growth behavior of a IN718 superalloy which is frequently used in aerospace components. In order to improve the limitation of fracture mechanics-based models, besides the predictions of the moderate fatigue crack growth rates at the Paris’ regime and the high fatigue crack growth rates at the high stress intensity factor ΔK levels, the present work is also aimed at simulating the material damage uniformly and examining the influence of the cohesive model parameters on fatigue crack growth systematically. The gradual loss of the stress-bearing ability of the material is considered through the degradation of a novel cohesive envelope. The experimental data of cracked specimens are used to validate the simulation result. Based on the reasonable estimation for the model parameters, the fatigue crack growth from moderate to high ΔK levels can be reproduced under the small-scale yielding condition, which is in fair agreement with the experimental results.


Author(s):  
Yi Pan ◽  
Assimina A. Pelegri

Fiber debonding in a bundled fiber reinforced polymer composite is investigated by using finite element method and cohesive zone model. Fiber and matrix are modeled as isotropic and linear elastic materials. Fiber/matrix interface is represented by a cohesive zone model governed by the traction-separation law. Effects of interfacial strength on interfacial debonding and stress field in the bundled fiber composite are examined. The stress field of the debonding composite is compared to that of perfectly bonded composite.


2018 ◽  
Vol 10 (02) ◽  
pp. 1850015 ◽  
Author(s):  
Guanghui Zhao ◽  
Ju Li ◽  
Y. X. Zhang ◽  
Zheng Liang ◽  
Chunhui Yang

Five different cohesive zone models (CZMs), including bilinear, polynomial, trapezoidal, exponential, and PPR (Park–Paulino–Roesler) models, which are commonly used in simulating fracture failure of metallic materials, are evaluated in this paper. The cohesive parameters of these CZMs are determined by an inverse analysis based on the modified Levenberg–Marquardt method. A finite element (FE) model is developed by employing these CZMs and used to predict fracture behaviors of steel grade 120, which is frequently used for the tool joints of drill pipes. Tensile and fracture tests are conducted to determine material properties and fracture behaviors of the steel grade 120, and the fracture behavior obtained from the experiment is used to determine the CZM parameters and validate the FE model. It is found that the five CZMs, with the cohesive parameters determined by the inverse analysis, can be used to simulate the ductile fracture process of the steel, and that among the five CZMs, the exponential CZM provides the closest results to the experimental data.


Sign in / Sign up

Export Citation Format

Share Document