Effects of BN/GO on the Recyclable, Healable and thermal conductivity Properties of ENR/PLA Thermoplastic Vulcanizates

Author(s):  
Chunhui Jia ◽  
Ping Zhang ◽  
Seyed Mohsen Seraji ◽  
Ruishi Xie ◽  
Lin Chen ◽  
...  
Author(s):  
Qi Tang ◽  
Lan Cao ◽  
Xiurui Lang ◽  
Yingxia Zong ◽  
Chengzhong Zong

In order to obtain higher thermoelectric and mechanical properties in non-polar thermoplastic vulcanizates (TPVs), the Butyl rubber/Polypropylene (TPVs)/hydroxylated graphene (HGE) composites with nanosheet network were prepared through masterbatch technique and based on thermodynamic calculations, using polypropylene-graft-maleic anhydride (PP-MA) as a compatibilizer. The FTIR and Raman spectra revealed the introduced maleic anhydride group on PP-MA can form strong interfacial interaction with hydroxyl-containing functional groups on HGE. Morphology study indicated the rubber particles in the composites occupied the most volume of the PP phase, as expected to hinder the aggregation of HGE and form the effective nanosheet network. The nanosheet network can be combined with the IIR cross-linked particles during the dynamic vulcanization process to improve the interface bonding between PP and IIR, thus increasing the tensile strength of TPVs. When the content of HGE reached the percolation threshold (2 wt.%), the nanosheet network of HGE was formed, and the AC conductivity, dielectric permittivity and thermal conductivity increased sharply. The prepared TPVs/HGE nanocomposites have significantly improved in mechanical properties, thermal properties and dielectric properties, which provides a guarantee for their potential application as multifunctional TPVs polymers.


1981 ◽  
Vol 42 (C4) ◽  
pp. C4-931-C4-934 ◽  
Author(s):  
M. F. Kotkata ◽  
M.B. El-den

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-893-C6-895
Author(s):  
M. Locatelli ◽  
R. Suchail ◽  
E. Zecchi
Keyword(s):  

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-247-C6-249 ◽  
Author(s):  
W. Bauernfeind ◽  
J. Keller ◽  
U. Schröder

2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Sign in / Sign up

Export Citation Format

Share Document