The effect of manufacturing parameters on the surface roughness of glass fibre reinforced polymer moulds

2017 ◽  
Vol 125 ◽  
pp. 39-48 ◽  
Author(s):  
M. Shah Mohammadi ◽  
M. Ghani ◽  
M. Komeili ◽  
B. Crawford ◽  
A.S. Milani
2016 ◽  
Vol 860 ◽  
pp. 64-69
Author(s):  
Md Anayet Ullah Patwari ◽  
Suleiman Mohammed Yusuf ◽  
Mohammad Ahsan Habib ◽  
Shahrair Ragib ◽  
Ferdous Azam

The use of glass fibre reinforced polymer composite materials (GFRP) increases due to its superior properties that draw the attention of the other researches focusing on relevant aspects concerning the machining of such materials. In conventional machining for hole creation, drilling is the most frequently employed machining process for hole generation in fibre reinforced materials. Due to the laminated structure of the composite materials, several types of damages and other surface irregularities are introduced during drilling processes. These defects in the holes lead to about 60% of the rejections in assembly plant. Surface roughness has been identified to be the main contribution for defects in holes machined in composites. These defects would create reduction in structural stiffness, which may lead to variation of dynamic performance of the whole structure. Hence, achieving the desired hole quality is of great importance for the functional behaviour of the mechanical parts. In the present work, the effect of permanent magnet on the quality of drilled holes on GFRP composite is presented. Experiments are performed under different magnetic drilling conditions of spindle speed, feed rate and drill diameter on CNC drilling machine using three levels of factors. A procedure has been adopted to assess and optimize the chosen factors by the use of Box Behnken design to analyse the effects of different parameters. From the experimental results, it has been observed that the technique used is convenient to predict the main effects and their interaction effects of different influential combinations of machining parameters on surface roughness. It has been found that effect of permanent magnetic on the guiding mechanism of the drill bit which lead to get improved surface roughness with better circularity compared to normal drilling processes. A mathematical model has been developed for the prediction of surface roughness using permanent magnet and normal drilling processes.


2014 ◽  
Vol 564 ◽  
pp. 428-433 ◽  
Author(s):  
S.N.A. Safri ◽  
Mohamed Thariq Hameed Sultan ◽  
N. Razali ◽  
Shahnor Basri ◽  
Noorfaizal Yidris ◽  
...  

The purpose of this work is to study the best number of layer with the higher impact energy using Glass Fibre Reinforced Polymer (GFRP). The number of layers used in this study was 25, 33, 41, and 49. The impact test was performed using Single Stage Gas Gun (SSGG) for each layers given above with different bullets such as blunt, hemispherical and conical bullets. The gas gun pressure was set to 5, 10, 15 and 20 bar. All of the signals captured from the impact test were recorded using a ballistic data acquisition system. The correlation between the impact energy in terms of number of layer and type of bullet from this test are presented and discussed. It can be summarise that as the number of layer increases, impact energy also increases. In addition, from the results, it was observed that by using different types of bullets (blunt, hemispherical, conical), there is only a slight difference in values of energy absorbed by the specimen.


2014 ◽  
Vol 970 ◽  
pp. 317-319 ◽  
Author(s):  
Syed Mohd Saiful Azwan ◽  
Yahya Mohd Yazid ◽  
Ayob Amran ◽  
Behzad Abdi

Fibre reinforced polymer (FRP) plates subject to quasi-static indentation loading were studied. The plates were fabricated from three layers of chopped strand mat glass fibre and polyester resin using vacuum infusion process. Indentation tests were conducted on the plates with loading rates of 1 mm/min, 10 mm/min, 100 mm/min and 500 mm/min using a hemispherical tip indenter with diameter 12.5 mm. The plates were clamped in a square fixture with an unsupported space of 100 mm × 100 mm. The loads and deflections at the indented location were measured to give energy absorption-deflection curves. The results showed that the loading rate has a large effect on the indentation behaviour and energy absorbed.


Sign in / Sign up

Export Citation Format

Share Document