Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface

2020 ◽  
Vol 192 ◽  
pp. 108011 ◽  
Author(s):  
Saurabh Khandelwal ◽  
Kyong Yop Rhee
2020 ◽  
Vol 3 (1) ◽  
pp. 1-1
Author(s):  
Kohl Jacobson ◽  
◽  
Sam Strassler ◽  
Courtney Spalt ◽  
Sara Henry ◽  
...  

Continuous fiber reinforced geopolymer matrix composites offer the potential for use in structural applications at temperatures up to 700°C, while enabling the manufacture at temperatures below 100°C. Studies have investigated a variety of high temperature structural fiber reinforcements, including carbon, SiC and Al2O3. While there has been active research into various grades of Al2O3 fibers, SiC is most commonly used for high temperature reinforcement of geopolymers in oxidizing environments. Both families of reinforcement are relatively expensive and are capable of use temperatures which exceed those of the geopolymer. Basalt fibers have the potential to be a good match for the geopolymer matrix, both in terms of upper use temperature and cost. In this study, Basalt fabric reinforced geopolymer composites were prepared with fibers having three different surface conditions, as-received (silane sized), cleaned, and carbon-coated, to investigate the effect of fiber-matrix interface on the mechanical properties. All specimens were fabricated, cured at 80°C and conditioned at 250°C for 5 hours to create the baseline specimens. More than half of the 70 specimens manufactured were exposed to an additional 5 hours at 650°C. Flexural strength, strain-to-failure and modulus were determined at ambient temperature via 4-point bend testing. The as-received and cleaned specimens showed moduli approaching theoretical predictions, indicating a strong interfacial bond, resulting in brittle failures at low loads. The carbon coating resulted in a three-fold increase in strength after the 250°C conditioning and retained a strength higher than the other specimens, even after the 650°C treatment. This strength increase did come with a reduced modulus, suggesting that the stress transfer between fiber and matrix in the carbon-coated basalt fiber reinforced geopolymer composites had also been reduced. While the carbonaceous interphase was not expected to be stable at the higher temperatures in an oxidizing environment, the results do indicate that significant Basalt fiber reinforced geopolymer strength gains are possible through the implementation of a tailored fiber/matrix interface as a crack blunting mechanism.


1989 ◽  
Vol 170 ◽  
Author(s):  
A. T. Dibenedetto ◽  
Jaime A. Gomez ◽  
C. Schilling ◽  
F. Osterholtz ◽  
G. Haddad

AbstractThe thermomechanical stability of organosilane surface treatments for E-glass fibers used in fiber reinforced composites was evaluated. The effect of molecular structure of 40 to 80 namometer coatings on the force transmission across the fiber/matrix interface was measured as a function of temperature and exposure to water using a fiber fragmentation test. It was found that phenyl-substituted amino silanes exhibited better thermal stability, but were less resistant to boiling water, than the commierically available γ-amino propyl silanes. A bis-trimethoxy γ-amino propyl silane showed an increase in both the hydrolytic and thermal stability when compared to the commiercial product. A good balance of thermal and hydrolytic stability was also obtained with a methylaminopropyltrimethoxy silane coating.The strain energy released from the glass fibers upon decoupling from the poxy matrix or silane coating was found to be in the range of 145 to 186 g/m2 and varied no more than 20 percent over a temperature range of 25 to 75°C or when exposed to boiling water and then redried. It also varied very little with the silane coating used. In addition, the average shear stress attained at the fiber-matrix interface in an imbedded single fiber test at 25°C was as much as two times higher than the shear strength of the epoxy matrix and as much as five times higher at elevated temperature. These data lead one to the conclusion that the interphase failure in these composites is controlled by a plane strain fracture in the constrained region of the organic phase, near the fiber surface, rather than by the maximum shear strength in the interphase.


PAMM ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Benedikt Rohrmüller ◽  
Michael Schober ◽  
Kerstin Dittmann ◽  
Peter Gumbsch ◽  
Jörg Hohe

Sign in / Sign up

Export Citation Format

Share Document