Wavy graphene foam reinforced elastomeric composites for large-strain stretchable conductors

Author(s):  
Lei Wang ◽  
Ying Wu ◽  
Zekun Li ◽  
Naisheng Jiang ◽  
Kangmin Niu
2008 ◽  
Vol 12 (3) ◽  
pp. 203-228 ◽  
Author(s):  
Said Taïbi ◽  
Jean-Marie Fleureau ◽  
Sigit Hadiwardoyo ◽  
Siba Kheirbek-Saoud

1990 ◽  
Vol 57 (2) ◽  
pp. 298-306 ◽  
Author(s):  
K. W. Neale ◽  
S. C. Shrivastava

The inelastic behavior of solid circular bars twisted to arbitrarily large strains is considered. Various phenomenological constitutive laws currently employed to model finite strain inelastic behavior are shown to lead to closed-form analytical solutions for torsion. These include rate-independent elastic-plastic isotropic hardening J2 flow theory of plasticity, various kinematic hardening models of flow theory, and both hypoelastic and hyperelastic formulations of J2 deformation theory. Certain rate-dependent inelastic laws, including creep and strain-rate sensitivity models, also permit the development of closed-form solutions. The derivation of these solutions is presented as well as numerous applications to a wide variety of time-independent and rate-dependent plastic constitutive laws.


2015 ◽  
Vol 1114 ◽  
pp. 143-148
Author(s):  
Nicolae Serban ◽  
Doina Răducanu ◽  
Vasile Danut Cojocaru ◽  
Nicolae Ghiban

Severe plastic deformation (SPD) has received enormous interest over the last two decades as a method capable of producing fully dense and bulk ultra-fine grained (UFG) and nanocrystalline (NC) materials. Significant grain refinement obtained by SPD leads to improvement of mechanical, microstructural and physical properties. Compared to classical deformation processes, the big advantage of SPD manufacturing techniques, represented in particular by equal channel angular pressing (ECAP) is the lack of shape-change deformation and the consequent possibility to impart extremely large strain. In ECAP processing, the workpiece is pressed through a die in which two channels of equal cross-section intersect at an angle of ϕ and an additional angle of ψ define the arc of curvature at the outer point of intersection of the two channels. As a result of pressing, the sample theoretically deforms by simple shear and retains the same cross-sectional area to allow repeated pressings for several cycles. A commercial AlMgSi alloy was investigated in our study. The specimens were processed at room temperature for multiple passes, using three different ECAP dies. All samples (ECAP processed and as-received) were subjected to metallographic analysis and mechanical testing. Several correlations between the main processing parameters and the resulting microstructural aspect and mechanical features for the processed material were established. It was shown that severe plastic deformation by means of ECAP processing can be used in aluminum alloys microstructural design as an advanced tool for grain refinement in order to attain the desired microstructure and mechanical properties.


2011 ◽  
Vol 21 (14) ◽  
pp. 2721-2728 ◽  
Author(s):  
Kai Liu ◽  
Yinghui Sun ◽  
Peng Liu ◽  
Xiaoyang Lin ◽  
Shoushan Fan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Malgorzata Skorupska ◽  
Anna Ilnicka ◽  
Jerzy P. Lukaszewicz

AbstractThe synthesis of metal-free but electrochemically active electrode materials, which could be an important contributor to environmental protection, is the key motivation for this research approach. The progress of graphene material science in recent decades has contributed to the further development of nanotechnology and material engineering. Due to the unique properties of graphene materials, they have found many practical applications: among others, as catalysts in metal-air batteries, supercapacitors, or fuel cells. In order to create an economical and efficient material for energy production and storage applications, researchers focused on the introduction of additional heteroatoms to the graphene structure. As solutions for functionalizing pristine graphene structures are very difficult to implement, this article presents a facile method of preparing nitrogen-doped graphene foam in a microwave reactor. The influence of solvent type and microwave reactor holding time was investigated. To characterize the elemental content and structural properties of the obtained N-doped graphene materials, methods such as elemental analysis, high-resolution transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy were used. Electrochemical activity in ORR of the obtained materials was tested using cyclic voltamperometry (CV) and linear sweep voltamperometry (LSV). The tests proved the materials’ high activity towards ORR, with the number of electrons reaching 3.46 for tested non-Pt materials, while the analogous value for the C-Pt (20 wt% loading) reference was 4.


Author(s):  
Neda Bahremandi Tolou ◽  
Hamidreza Salimijazi ◽  
Mahshid Kharaziha ◽  
Giuliana Faggio ◽  
Rosa Chierchia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document