stretchable conductors
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 44)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Xiaoliang Chen ◽  
Peng Sun ◽  
Hongmiao Tian ◽  
Xiangming Li ◽  
Chunhui Wang ◽  
...  

Flexible and stretchable conductors are critical elements for constructing soft electronic systems and have recently attracted tremendous attention. Next generation electronic devices call for self-healing conductors that can mimic the...


Author(s):  
Jun Zhou ◽  
Honghao Yan ◽  
Chengyun Wang ◽  
Huaqiang Gong ◽  
Qiuxiao Nie ◽  
...  

2021 ◽  
pp. 2107082
Author(s):  
Fei Zhang ◽  
Danhui Ren ◽  
Lingqi Huang ◽  
Yinhang Zhang ◽  
Yuxuan Sun ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Michael Lerond ◽  
Arunprabaharan Subramanian ◽  
W. G. Skene ◽  
Fabio Cicoira

Stretchable conductors and organic electrochemical transistors (OECT) were fabricated from PEDOT:Tos (poly (3,4-ethylenedioxythiophene):iron tosylate) nanofibers. The devices were prepared by a combination of electrospinning and electrode printing followed by vapor phase polymerization (VPP). The impact of both the processing time and the composition of three electrospinning mixtures on the electrospun fiber mats was evaluated by scanning electron microscopy and cyclic voltammetry. Fibrillar mats prepared from the different mixtures maintained their electrical properties and could be stretched up to 140% of their original length. Stretchable OECTs were fabricated by printing silver drain and source electrodes directly on the conductive spun fibers. The fabricated devices showed transistor behavior up to ∼50% strain.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kirill Keller ◽  
David Grafinger ◽  
Francesco Greco

As printed electronics is evolving toward applications in biosensing and wearables, the need for novel routes to fabricate flat, lightweight, stretchable conductors is increasing in importance but still represents a challenge, limiting the actual adoption of ultrathin wearable devices in real scenarios. A suitable strategy for creating soft yet robust and stretchable interconnections in the aforementioned technological applications is to use print-related techniques to pattern conductors on top of elastomer substrates. In this study, some thin elastomeric sheets—two forms of medical grade thermoplastic polyurethanes and a medical grade silicone—are considered as suitable substrates. Their mechanical, surface, and moisture barrier properties—relevant for their application in soft and wearable electronics—are first investigated. Various approaches are tested to pattern conductors, based on screen printing of 1) conducting polymer [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)] or 2) stretchable Ag ink and 3) laser scribing of laser-induced graphene (LIG). The electromechanical properties of these materials are investigated by means of tensile testing and concurrent electrical measurements up to a maximum strain of 100%. Performance of the different stretchable conductors is compared and rationalized, evidencing the differences in onset and propagation of failure. LIG conductors embedded into MPU have shown the best compromise in terms of electromechanical performance for the envisioned application. LIG/MPU showed full recovery of initial resistance after multiple stretching up to 30% strain and recovery of functionality even after 100% stretch. These have been then used in a proof-of-concept application as connectors for a wearable tattoo biosensor, providing a stable and lightweight connection for external wiring.


2021 ◽  
Vol 7 (27) ◽  
pp. eabf7558
Author(s):  
Louis Martin-Monier ◽  
Pierre-Luc Piveteau ◽  
Fabien Sorin

Soft electronics have recently gathered considerable interest because of their biomechanical compatibility. An important feature of deformable conductors is their electrical response to strain. While development of stretchable materials with high gauge factors has attracted considerable attention, there is a growing need for stretchable conductors whose response to deformation can be accurately engineered to provide arbitrary resistance-strain relationships. Rare studies addressing this issue have focused on deterministic geometries of single rigid materials, limiting the scope of these strategies. We introduce the novel concept of periodic stretchable patterns combining multiple conductive materials to produce tailored responses. Using shortest path algorithms, we establish a computationally efficient selection method to obtain the required resistance-strain relationship. Using this algorithm, we identify and experimentally demonstrate constant resistance-strain responses up to 50% elongation using a single microtextured material. Last, we demonstrate counterintuitive sinusoidal responses by integrating three materials, with interesting applications in sensing and soft robotics.


Sign in / Sign up

Export Citation Format

Share Document