Effect of molecular weight on isothermal crystallization kinetics of multi-walled carbon nanotubes-graft-poly(ε-caprolactone)

2014 ◽  
Vol 93 ◽  
pp. 23-29 ◽  
Author(s):  
Bing Zhou ◽  
Wei-Na He ◽  
Xuan-Yao Jiang ◽  
Zai-Zai Tong ◽  
Jun-Ting Xu ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Xiangning Wen ◽  
Yunlan Su ◽  
Shaofan Li ◽  
Weilong Ju ◽  
Dujin Wang

In this work, the crystallization kinetics of poly(ethylene oxide) (PEO) matrix included with poly(ethylene glycol) (PEG) grafted silica (PEG-g-SiO2) nanoparticles and bare SiO2 were systematically investigated by differential scanning calorimetry (DSC) and polarized light optical microscopy (PLOM) method. PEG-g-SiO2 can significantly increase the crystallinity and crystallization temperature of PEO matrix under the non-isothermal crystallization process. Pronounced effects of PEG-g-SiO2 on the crystalline morphology and crystallization rate of PEO were further characterized by employing spherulitic morphological observation and isothermal crystallization kinetics analysis. In contrast to the bare SiO2, PEG-g-SiO2 can be well dispersed in PEO matrix at low P/N (P: Molecular weight of matrix chains, N: Molecular weight of grafted chains), which is a key factor to enhance the primary nucleation rate. In particular, we found that the addition of PEG-g-SiO2 slows the spherulitic growth fronts compared to the neat PEO. It is speculated that the interfacial structure of the grafted PEG plays a key role in the formation of nuclei sites, thus ultimately determines the crystallization behavior of PEO PNCs and enhances the overall crystallization rate of the PEO nanocomposites.


2019 ◽  
Vol 41 (3) ◽  
pp. 394-394
Author(s):  
Zhi Qiang Wang Zhi Qiang Wang ◽  
Yong Ke Zhao and Xiang Feng Wu Yong Ke Zhao and Xiang Feng Wu

The hybrids combined by nano-materials with different dimensions usually possess much better enhancement effects than single one. Graphene oxide-carbon nanotubes hybrids / polyamide 6 composites has been fabricated. The non-isothermal crystallization kinetics of the as-prepared samples was discussed. Research results showed that increasing the cooling rate was in favor of increasing the crystallization rate and the degree of crystallinity for the as-prepared samples. Moreover, the crystallization rate was first decreased and then increased with increasing the hybrids loading. Furthermore, the crystallization mechanism was changed with increasing the crystallization temperature and the cooling rate. The nucleation and growth modes of the non-isothermal crystallization could be classified into three different types, according to the Ozawa’s theory. These complicated results could be attributed to the important role of crystallization rate as well as the simultaneous hindering and promoting effects of the as-prepared hybrids. This work has reference values for understanding the crystallization kinetics of the polyamide 6-based composites.


Sign in / Sign up

Export Citation Format

Share Document