Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests

2015 ◽  
Vol 113 ◽  
pp. 1-8 ◽  
Author(s):  
Biao Chen ◽  
Shufeng Li ◽  
Hisashi Imai ◽  
Lei Jia ◽  
Junko Umeda ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1613
Author(s):  
Íris Carneiro ◽  
Sónia Simões

Carbon nanotubes (CNTs)-reinforced metal matrix composites are very attractive advanced nanocomposites due to their potential unusual combination of excellent properties. These nanocomposites can be produced by several techniques, the most reported being powder metallurgy, electrochemical routes, and stir or ultrasonic casting. However, the final mechanical properties are often lower than expected. This can be attributed to a lack of understanding concerning the strengthening mechanisms that act to improve the mechanical properties of the metal matrix via the presence of the CNTs. The dispersion of the CNTs is the main challenge in the production of the nanocomposites, and is independent of the production technique used. This review describes the strengthening mechanism that act in CNT-reinforced metal matrix nanocomposites, such as the load transfer, grain refinement or texture strengthening, second phase, and strain hardening. However, other mechanisms can occur, such as solid solution strengthening, and these depend on the metal matrix used to produce the nanocomposites. Different metallic matrices and different production techniques are described to evaluate their influence on the reinforcement of these nanocomposites.


1993 ◽  
Vol 8 (9) ◽  
pp. 2380-2392 ◽  
Author(s):  
R. Mitra ◽  
W.A. Chiou ◽  
M.E. Fine ◽  
J.R. Weertman

A detailed study was conducted of the microstructure and particle-matrix interfaces in Al/TiCpmetal matrix composites prepared by theXDprocess and subsequent extrusion. A study of the morphology of the TiC particles showed that the surfaces are low index (111) and (200) planes, the former being more common. Direct contact on an atomic scale is established between Al and TiC, allowing chemical bonds to form. Young's modulus is in the range expected for a composite of Al and TiC with good interfacial bonding and load transfer to the particles. No third element has been detected at the interfaces, showing that they are clean. Both incoherent and semicoherent interfaces are seen. The interface character depends on the size of the particles and their orientation with respect to the neighboring Al grains. “Special” interfaces with evidence for nearly periodic dislocations were observed in bothXDAl/TiC and Al/TiB2composites, indicating the general tendency ofin situcomposites to lower their interfacial energy by forming such boundaries.


2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

2019 ◽  
Vol 61 (8) ◽  
pp. 779-786
Author(s):  
Bellamballi Munivenkatappan Muthami Selvan ◽  
Veeramani Anandakrishnan ◽  
Muthukannan Duraiselvam ◽  
Sivaraj Sundarameenakshi

2018 ◽  
Vol 738 ◽  
pp. 344-352 ◽  
Author(s):  
R. Vasanth Kumar ◽  
R. Keshavamurthy ◽  
Chandra S. Perugu ◽  
Praveennath G. Koppad ◽  
Mohammad Alipour

Sign in / Sign up

Export Citation Format

Share Document