Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface

2017 ◽  
Vol 149 ◽  
pp. 75-80 ◽  
Author(s):  
Jidong Dong ◽  
Chuyuan Jia ◽  
Mingqiang Wang ◽  
Xiaojiao Fang ◽  
Huawei Wei ◽  
...  
2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


2007 ◽  
Vol 471 (1-2) ◽  
pp. 169-173 ◽  
Author(s):  
Bin Li ◽  
Chang-Rui Zhang ◽  
Feng Cao ◽  
Si-Qing Wang ◽  
Bang Chen ◽  
...  

Author(s):  
A. B. M. I. Islam ◽  
Ajit D. Kelkar ◽  
Lifeng Zhang

In recent years use of electrospun nanofibers and nanoparticles to improve the interlaminar properties have increased significantly. In most of the cases the additional interlaminar phase of nanofibers is required to go through various thermal and/or chemical processes. There has been emphasis to optimize the interlaminar nanofiber layers to achieve the optimum desired mechanical properties such as interlaminar strength. One common practice is to disperse nanofibers into the resin and then use the nanofiber enhanced resin to fabricate the laminated composites. However, proper dispersion and fiber filtering out are some of the problems that exist in fabrication using the nanofiber mixed resin approach. To alleviate this problem, an innovative approach of growing PAN (polyacrylnitrile) nano fibers directly on carbon fabric by electrospinning seems to solve the dispersion and fiber filtering problem. However, as PAN fibers require stabilization and carbonization, it is obvious that carbon fabric with PAN fiber deposition will have to undergo stabilization and carbonization process. The effect of stabilization and carbonization heat treatment on the mechanical properties of carbon fiber fabric is not yet fully understood. This paper presents the effects of heat treatment on carbon fabric used for fabricating laminated carbon fiber reinforced composite with epoxy resin. The heat treatment was performed at 280°C in air for six hours, and 1200°C for one hour in nitrogen which are similar to stabilization and carbonization of pure PAN fibers. The effects, due to heat treatment, were mainly characterized in terms of mechanical properties by performing tensile tests and shear tests. Fiber surface topography was observed by SEM to analyze physical changes. Chemical changes, corresponding to the existing groups with carbon fibers, were examined through FTIR. The results obtained are compared with a set of control laminated composite specimens, which were fabricated using heat vacuum assisted resin transfer molding (HVARTM) process and cured at 149°C. The two sets of composite were infused with resin in a single vacuum bag to ensure that both sets of specimens have identical resin infusion and cure cycle. Laminates used for making control specimens were fabricated using carbon fabric which did not undergo any heat treatment. A change in laminate thickness for heat treated carbon fabric was observed indicating a possible bulk up of the carbon fibers due to loss of sizing compounds, which also resulted into significant change in tensile properties.


Sign in / Sign up

Export Citation Format

Share Document