A novel expandable porous composite based on acetalized polyvinyl alcohol and calcium sulfate used for injectable bone repair materials

2018 ◽  
Vol 157 ◽  
pp. 10-20 ◽  
Author(s):  
Hongyu Du ◽  
Yudong Zheng ◽  
Wei He ◽  
Yi Sun ◽  
Yansen Wang
Author(s):  
Qiuju Miao ◽  
Nan Jiang ◽  
Qinmeng Yang ◽  
Ismail mohamed Hussein ◽  
Zhen Luo ◽  
...  

Abstract Various requirements for the repair of complex bone defects have motivated to development of scaffolds with adjustable degradation rates and biological functions. Tricalcium phosphate and calcium sulfate are the most commonly used bone repair materials in the clinic, how to better combine tricalcium phosphate and calcium sulfate and play their greatest advantages in the repair of osteoporotic bone defect is the focus of our research. In this study, a series of scaffolds with multistage-controlled degradation properties composed of strontium-doped calcium sulfate (SrCSH) and strontium-doped tricalcium phosphate microspheres (Sr-TCP) scaffolds were prepared, and their osteogenic activity, in vivo degradation and bone regeneration ability in tibia of osteoporotic rats were evaluated. In vitro studies revealed that different components of SrCSH/Sr-TCP scaffolds significantly promoted the proliferation and differentiation of MC3T3-E1 cells, which showed a good osteogenic induction activity. In vivo degradation results showed that the degradation time of composite scaffolds could be controlled in a large range (6-12 months) by controlling the porosity and phase composition of Sr-TCP microspheres. The results of osteoporotic femoral defect repair showed that when the degradation rate of scaffold matched with the growth rate of new bone, the parameters such as BMD, BV/TV, Tb.Th, angiogenesis marker CD31 and new bone formation marker OCN expression were higher, which promoted the rapid repair of osteoporotic bone defects. On the contrary, the slow degradation rate of scaffolds hindered the growth of new bone to a certain extent. This study elucidates the importance of the degradation rate of scaffolds for the repair of osteoporotic bone defects, and the design considerations can be extended to other bone repair materials, which is expected to provide new ideas for the development of tissue engineering materials in the future.


2019 ◽  
Vol 107 (7) ◽  
pp. 1491-1512 ◽  
Author(s):  
Jie Liao ◽  
Shuai Wu ◽  
Kun Li ◽  
Yubo Fan ◽  
Nicholas Dunne ◽  
...  

2017 ◽  
Vol 5 (12) ◽  
pp. 2245-2253 ◽  
Author(s):  
Yi-Xuan Chen ◽  
Rong Zhu ◽  
Zheng-liang Xu ◽  
Qin-Fei Ke ◽  
Chang-Qing Zhang ◽  
...  

The self-assembly of pifithrin-α-loaded layered double hydroxide/chitosan nanohybrid composites as a drug delivery system was demonstrated for the first time to improve the cytocompatibility and enhance the osteoinductivity for the treatment of bone defects.


Bone ◽  
2010 ◽  
Vol 47 ◽  
pp. S432
Author(s):  
Shihui Chen ◽  
Tao Tang ◽  
Zhong Liu ◽  
Poying Lau ◽  
Xinhui Xie ◽  
...  

2013 ◽  
Vol 738 ◽  
pp. 26-29 ◽  
Author(s):  
Ting Ting Yan ◽  
Yong Shun Cui ◽  
Qing Hua Chen

Hydroxyapatite is well used as bone repair materials, due to its properties that can be combined with strontium to improve mechanical property and degradation property. In this article, hydroxyapatite whiskers with different amount of doped strontium were prepared with diammonium phosphate, calcium nitrate and strontium nitrate at 94 °C. Fourier transform infrared spectroscopy (FTIR) was used to identify the functional groups. X-ray diffraction (XRD) analysis was carried out to study the phase composition and crystallinity of the whisker. The morphology of the whiskers was characterized by scanning electron microscope (SEM). It was indicated that strontium can be doped in hydroxyapatite with proper process and then the strontium-doped hydroxyapatite whiskers were produced successfully.


Sign in / Sign up

Export Citation Format

Share Document