Effective through-the-thickness diffusivity of plain-woven composite from analytical homogenization

2021 ◽  
Vol 202 ◽  
pp. 108552
Author(s):  
Simon Heide-Jørgensen ◽  
Claus H. Ibsen ◽  
Michal K. Budzik
2020 ◽  
Vol 243 ◽  
pp. 112169 ◽  
Author(s):  
Adam Ewert ◽  
Borys Drach ◽  
Kostiantyn Vasylevskyi ◽  
Igor Tsukrov

2021 ◽  
Vol 22 (1) ◽  
pp. 256-263
Author(s):  
Xiaoping Gao ◽  
Cong Wang ◽  
Wei Wu ◽  
Yonggui Li

2022 ◽  
Author(s):  
Kenneth N. Segal ◽  
Babak Farrokh ◽  
Andrew Bergan ◽  
Arunkumar Satyanarayana ◽  
David W. Sleight ◽  
...  

2021 ◽  
Author(s):  
ALEXANDER D. SNYDER ◽  
ZACHARY J. PHILLIPS ◽  
JASON F. PATRICK

Fiber-reinforced polymer composites are attractive structural materials due to their high specific strength/stiffness and excellent corrosion resistance. However, the lack of through-thickness reinforcement in laminated composites creates inherent susceptibility to fiber-matrix debonding, i.e., interlaminar delamination. This internal damage mode has proven difficult to detect and nearly impossible to repair via conventional methods, and therefore, remains a significant factor limiting the reliability of composite laminates in lightweight structures. Thus, novel approaches for mitigation (e.g., self-healing) of this incessant damage mode are of tremendous interest. Self-healing strategies involving sequestration of reactive liquids, i.e. microcapsule and microvascular systems, show promise for the extending service- life of laminated composites. However, limited heal cycles, long reaction times (hours/days), and variable stability of chemical agents under changing environmental conditions remain formidable research challenges. Intrinsic self- healing approaches that utilize reversible bonds in the host material circumvent many of these limitations and offer the potential for unlimited heal cycles. Here we detail the development of an intrinsic self-healing woven composite laminate based on thermally-induced dynamic bond re-association of 3D-printed polymer interlayers. In contrast to prior work, self-repair of the laminate occurs in situ and below the glass-transition temperature of the epoxy matrix, and maintains >85% of the elastic modulus during healing. This new platform has been deployed in both glass and carbon-fiber composites, demonstrating application versatility. Remarkably, up to 20 rapid (minute-scale) self-healing cycles have been achieved with healing efficiencies hovering 100% of the interlayer toughened (4-5x) composite laminate. This latest self-healing advancement exhibits unprecedented potential for perpetual in-service repair along with material multi-functionality (e.g., deicing ability) to meet modern application demands.


2014 ◽  
Vol 611-612 ◽  
pp. 292-299 ◽  
Author(s):  
Sylvain Mathieu ◽  
Philippe Boisse ◽  
Nahiene Hamila ◽  
Florent Bouillon

3D woven composite reinforcements preforming simulations are an unavoidable step of composite part processing. The present paper deals with thick composite fabric behavior modelling and issues arising during the numerical simulation of preforming. After the description of the independent deformation modes of initially orthotropic reinforcements, a physically motivated and invariant based hyperelastic strain energy density is introduced. This constitutive law is used to show the limitations of a classical finite element formulation in 3D fabric simulations. Tension locking is highlighted in bias extension tests and a reduced integration hexahedral finite element with specific physical hourglass stabilization is proposed. Instabilities due to the highly anisotropic behavior law, witnessed in bending dominated situations, are exposed and a stabilization procedure is initiated.


2016 ◽  
Vol 23 (6) ◽  
pp. 1117-1135 ◽  
Author(s):  
Yu Wang ◽  
Jin Sun ◽  
Deng’an Cai ◽  
Guangming Zhou

Author(s):  
P. Rupnowski ◽  
M. Gentz ◽  
J. K. Sutter ◽  
M. Kumosa

In this work, a methodology has been presented for the evaluation of stiffness properties and temperature–dependent coefficients of thermal expansion of continuous fibres from the macroscopic properties of either unidirectional or woven composites. The methodology was used to determine the stiffness and thermal properties of T650–35 graphite fibres from the macroscopic input data of unidirectional and woven composites based on the same fibres embedded in a PMR–15 polyimide matrix. In the first part of the analysis, the fibre properties were determined directly from the unidirectional composite macro data using the inversed Eshelby–Mori–Tanaka approach. Subsequently, certain fibre properties were additionally evaluated indirectly from the woven composite, using the finite–element method and the concept of a representative unit cell. It has been shown that the temperature–dependent coefficients of thermal expansion of the fibres can be estimated from the unidirectional composite macro data with significantly smaller errors than in the case of the elastic properties. It has also been shown that the errors in the evaluation of the elastic properties of the fibres from the macro unidirectional composite data could be significantly reduced if the fibres were placed in a stiff matrix material: much stiffer than the polyimide resin. The longitudinal and transverse coefficients of thermal expansions and the shear modulus of the T650–35 fibres determined from the unidirectional composite analysis were successfully verified by investigating the woven composite.


Sign in / Sign up

Export Citation Format

Share Document