A hybrid chaos control approach of the performance measure functions for reliability-based design optimization

2015 ◽  
Vol 146 ◽  
pp. 32-43 ◽  
Author(s):  
Zeng Meng ◽  
Gang Li ◽  
Bo Ping Wang ◽  
Peng Hao
2019 ◽  
Vol 19 (3) ◽  
pp. 221-230 ◽  
Author(s):  
Gh. Kharmanda ◽  
I. R. Antypas

Introduction. The integration of reliability and optimization concepts seeks to design structures that should be both economic and reliable. This model is called Reliability-Based Design Optimization (RBDO). In fact, the coupling between the mechanical modelling, the reliability analyses and the optimization methods leads to very high computational cost and weak convergence stability. Materials andMethods. Several methods have been developed to overcome these difficulties. The methods called Reliability Index Approach (RIA) and Performance Measure Approach (PMA) are two alternative methods. RIA describes the probabilistic constraint as a reliability index while PMA was proposed by converting the probability measure to a performance measure. An Optimum Safety Factor (OSF) method is proposed to compute safety factors satisfying a required reliability level without demanding additional computing cost for the reliability evaluation. The OSF equations are formulated considering RIA and PMA and extended to multiple failure case.Research Results. Several linear and nonlinear distribution laws are applied to composite yarns studies and then extended to multiple failure modes. It has been shown that the idea of the OSF method is to avoid the reliability constraint evaluation with a particular optimization process.Discussion and Conclusions. The simplified implementation framework of the OSF strategy consists of decoupling the optimization and the reliability analyses. It provides designers with efficient solutions that should be economic satisfying a required reliability level. It is demonstrated that the RBDO compared to OSF has several advantages: small number of optimization variables, good convergence stability, small computing time, satisfaction of the required reliability levels.


2006 ◽  
Vol 129 (4) ◽  
pp. 449-454 ◽  
Author(s):  
Alan P. Bowling ◽  
John E. Renaud ◽  
Jeremy T. Newkirk ◽  
Neal M. Patel ◽  
Harish Agarwal

In this investigation a robotic system’s dynamic performance is optimized for high reliability under uncertainty. The dynamic capability equations (DCE) allow designers to predict the dynamic performance of a robotic system for a particular configuration and reference point on the end effector (i.e., point design). Here the DCE are used in conjunction with a reliability-based design optimization (RBDO) strategy in order to obtain designs with robust dynamic performance with respect to the end-effector reference point. In this work a unilevel performance measure approach is used to perform RBDO. This is important for the reliable design of robotic systems in which a solution to the DCE is required for each constraint call. The method is illustrated on a robot design problem.


1999 ◽  
Vol 121 (4) ◽  
pp. 557-564 ◽  
Author(s):  
J. Tu ◽  
K. K. Choi ◽  
Y. H. Park

This paper presents a general approach for probabilistic constraint evaluation in the reliability-based design optimization (RBDO). Different perspectives of the general approach are consistent in prescribing the probabilistic constraint, where the conventional reliability index approach (RIA) and the proposed performance measure approach (PMA) are identified as two special cases. PMA is shown to be inherently robust and more efficient in evaluating inactive probabilistic constraints, while RIA is more efficient for violated probabilistic constraints. Moreover, RBDO often yields a higher rate of convergence by using PMA, while RIA yields singularity in some cases.


Sign in / Sign up

Export Citation Format

Share Document