Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm

2016 ◽  
Vol 143 ◽  
pp. 287-299 ◽  
Author(s):  
Felipe Schaedler de Almeida
Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1235
Author(s):  
Celal Cakiroglu ◽  
Kamrul Islam ◽  
Gebrail Bekdaş ◽  
Sanghun Kim ◽  
Zong Woo Geem

The stacking sequence optimization of laminated composite plates while maximizing the structural performance or minimizing the weight is a subject investigated extensively in the literature. Meanwhile, research on the optimization of laminates with cut-outs has been relatively limited. Cut-outs being an indispensable feature of structural components, this paper concentrates on the stacking sequence optimization of composite laminates in the presence of circular cut-outs. The buckling load of a laminate is used as a metric to quantify the structural performance. Here the laminates are modeled as carbon fiber-reinforced composites using the finite element analysis software, ABAQUS. For the optimization, the widely used harmony search algorithm is applied. In terms of design variables, ply thickness, and fiber orientation angles of the plies are used as continuously changing variables. In addition to the stacking sequence, another geometric variable to consider is the aspect ratio (ratio of the length of the longer sides to the length of the shorter sides of the plate) of the rectangular laminates. The optimization is carried out for three different aspect ratios. It is shown that, by using dispersed stacking sequences instead of the commonly used 0°/±45°/±90° fiber angle stacks, significantly higher buckling loads can be achieved. Furthermore, changing the cut-out geometry is found to have a significant effect on the structural performance.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2862 ◽  
Author(s):  
Celal Cakiroglu ◽  
Gebrail Bekdaş ◽  
Zong Geem

One of the major goals in the process of designing structural components is to achieve the highest possible buckling load of the structural component while keeping the cost and weight at a minimum. This paper illustrates the application of the harmony search algorithm to the buckling load maximisation of dispersed laminated composite plates with rectangular geometry. The ply thicknesses and fiber orientation angles of the plies were chosen as the design variables. Besides the commonly used carbon fiber reinforced composites, boron/epoxy and glass/epoxy composite plates were also optimised using the harmony search algorithm. Furthermore, the optimisation algorithm was applied to plates with three different aspect ratios (ratio of the longer side length to the shorter side length of the plate). The buckling loads of the plates with optimised dispersed stacking sequences were compared to the buckling loads of plates with the commonly applied 0°, ±45°, and 90° fiber angle sequence and identical ply thicknesses. For all three aspect ratios and materials in this study, the dispersed stacking sequences performed better than the plates with regular stacking sequences.


Sign in / Sign up

Export Citation Format

Share Document