New transverse shear deformation theory for bending analysis of FGM plate under patch load

2019 ◽  
Vol 208 ◽  
pp. 91-100 ◽  
Author(s):  
Rahul Kumar ◽  
Achchhe Lal ◽  
B.N. Singh ◽  
Jeeoot Singh
2009 ◽  
Vol 79-82 ◽  
pp. 1313-1316 ◽  
Author(s):  
Ruediger Schmidt ◽  
Thang Duy Vu

This paper deals with nonlinear finite element analysis of smart structures with integrated piezoelectric layers. Two geometrically nonlinear finite plate elements incorporating piezoelectric layers are applied based either on first- or third-order transverse shear deformation theory. Nonlinear strain-displacement relations are used that are valid for small strains and moderate rotations. Numerical tests are performed for the time histories of the tip displacement and sensor output voltage of a thin beam with a piezoelectric patch bonded to the surface.


Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Abdelhak Khechai ◽  
Aicha Bessaim ◽  
Mohammed-Sid-Ahmed Houari ◽  
Aman Garg ◽  
...  

In this paper, the bending behavior of functionally graded single-layered, symmetric and non-symmetric sandwich beams is investigated according to a new higher order shear deformation theory. Based on this theory, a novel parabolic shear deformation function is developed and applied to investigate the bending response of sandwich beams with homogeneous hardcore and softcore. The present theory provides an accurate parabolic distribution of transverse shear stress across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the functionally graded sandwich beam without using any shear correction factors. The governing equations derived herein are solved by employing the finite element method using a two-node beam element, developed for this purpose. The material properties of functionally graded sandwich beams are graded through the thickness according to the power-law distribution. The predictive capability of the proposed finite element model is demonstrated through illustrative examples. Four types of beam support, i.e. simply-simply, clamped-free, clamped–clamped, and clamped-simply, are used to study how the beam deflection and both axial and transverse shear stresses are affected by the variation of volume fraction index and beam length-to-height ratio. Results of the numerical analysis have been reported and compared with those available in the open literature to evaluate the accuracy and robustness of the proposed finite element model. The comparisons with other higher order shear deformation theories verify that the proposed beam element is accurate, presents fast rate of convergence to the reference results and it is also valid for both thin and thick functionally graded sandwich beams. Further, some new results are reported in the current study, which will serve as a benchmark for future research.


2012 ◽  
Vol 29 (2) ◽  
pp. 241-252 ◽  
Author(s):  
A. S. Sayyad ◽  
Y. M. Ghugal

AbstractThis paper deals with the problem of stress distribution in orthotropic and laminated plates subjected to central concentrated load. An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is used to obtain in-plane normal and transverse shear stresses through the thickness of plate. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. A simply supported plate with central concentrated load is considered for the numerical analysis. Anomalous behavior of inplane normal and transverse shear stresses is observed due to effect of stress concentration compared to classical plate theory and first order shear deformation theory.


2010 ◽  
Vol 2010.1 (0) ◽  
pp. 85-86
Author(s):  
Masahiro HIGUCHI ◽  
Tadaharu ADACHI ◽  
Harunobu NAGINO ◽  
Nobuhiko Yoshigaki

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
A. S. Sayyad ◽  
Y. M. Ghugal ◽  
N. S. Naik

AbstractA trigonometric beam theory (TBT) is developed for the bending analysis of laminated composite and sandwich beams considering the effect of transverse shear deformation. The axial displacement field uses trigonometric function in terms of thickness coordinate to include the effect of transverse shear deformation. The transverse displacement is considered as a sum of two partial displacements, the displacement due to bending and the displacement due to transverse shearing. Governing equations and boundary conditions are obtained by using the principle of virtual work. To demonstrate the validity of present theory it is applied to the bending analysis of laminated composite and sandwich beams. The numerical results of displacements and stresses obtained by using present theory are presented and compared with those of other trigonometric theories available in literature along with elasticity solution wherever possible.


Sign in / Sign up

Export Citation Format

Share Document