Isogeometric-stepwise vibrational behavior of rotating functionally graded blades with variable thickness at an arbitrary stagger angle subjected to thermal environment

2020 ◽  
Vol 244 ◽  
pp. 112281 ◽  
Author(s):  
E. Ansari ◽  
A.R. Setoodeh ◽  
T. Rabczuk
2019 ◽  
Vol 26 (1-2) ◽  
pp. 73-87 ◽  
Author(s):  
Roshan Lal ◽  
Rahul Saini

The vibration of functionally graded circular plates of variable thickness under a thermal environment is analyzed when the nodal lines are concentric circles by using the generalized differential quadrature method for the nonlinear temperature distribution in the thickness direction. The parabolic variation in thickness along the radial direction is controlled by a taper constant. The plate material is graded in the transverse direction and its mechanical properties are temperature-dependent. The thermal environment over the top and bottom surfaces of the plate is assumed to be uniform. Hamilton's principle has been used in obtaining the governing differential equations for thermo-elastic equilibrium and axisymmetric motion for such a plate model employing Kirchhoff plate theory. Numerical results for thermal displacements and natural frequencies of clamped and simply supported plates have been obtained using MATLAB. The effect of the taper constant, volume fraction index, and temperature difference on the vibration characteristics has been analyzed for the lowest three modes of vibration. A study in which the plate material has temperature-independent properties has also been performed. The accuracy of the present technique is verified by comparing the results with those available in the literature.


2021 ◽  
Vol 10 (1) ◽  
pp. 414-430
Author(s):  
Chunwei Zhang ◽  
Qiao Jin ◽  
Yansheng Song ◽  
Jingli Wang ◽  
Li Sun ◽  
...  

Abstract The sandwich structures are three- or multilayered structures such that their mechanical properties are better than each single layer. In the current research, a three-layered cylindrical shell including a functionally graded porous core and two reinforced nanocomposite face sheets resting on the Pasternak foundation is used as model to provide a comprehensive understanding of vibrational behavior of such structures. The core is made of limestone, while the epoxy is utilized as the top and bottom layers’ matrix phase and also it is reinforced by the graphene nanoplatelets (GNPs). The pattern of the GNPs dispersion and the pores distribution play a crucial role at the continuous change of the layers’ properties. The sinusoidal shear deformation shells theory and the Hamilton’s principle are employed to derive the equations of motion for the mentioned cylindrical sandwich shell. Ultimately, the impacts of the model’s geometry, foundation moduli, mode number, and deviatory radius on the vibrational behavior are investigated and discussed. It is revealed that the natural frequency and rotation angle of the sandwich shell are directly related. Moreover, mid-radius to thickness ratio enhancement results in the natural frequency reduction. The results of this study can be helpful for the future investigations in such a broad context. Furthermore, for the pipe factories current study can be effective at their designing procedure.


Author(s):  
V Kumar ◽  
SJ Singh ◽  
VH Saran ◽  
SP Harsha

The present paper investigates the free vibration analysis for functionally graded material plates of linearly varying thickness. A non-polynomial higher order shear deformation theory is used, which is based on inverse hyperbolic shape function for the tapered FGM plate. Three different types of material gradation laws, specifically: a power (P-FGM), exponential (E-FGM), and sigmoid law (S-FGM) are used to calculate the property variation in the thickness direction of FGM plate. The variational principle has been applied to derive the governing differential equation for the plates. Non-dimensional frequencies have been evaluated by considering the semi-analytical approach viz. Galerkin-Vlasov’s method. The accuracy of the preceding formulation has been validated through numerical examples consisting of constant thickness and tapered (variable thickness) plates. The findings obtained by this method are found to be in close agreement with the published results. Parametric studies are then explored for different geometric parameters like taper ratio and boundary conditions. It is deduced that the frequency parameter is maximum for S-FGM tapered plate as compared to E- and P-FGM tapered plate. Consequently, it is concluded that the S-FGM tapered plate is suitable for those engineering structures that are subjected to huge excitations to avoid resonance conditions. In addition, it is found that the taper ratio is significantly affected by the type of constraints on the edges of the tapered FGM plate. Some novel results for FGM plate with variable thickness are also computed that can be used as benchmark results for future reference.


Sign in / Sign up

Export Citation Format

Share Document