Three-dimensional free flexural vibrations of fluid-filled functionally graded circular cylindrical shell with curvilinear radius variation

2021 ◽  
pp. 114263
Author(s):  
A. Houmat

2017 ◽  
Vol 38 (4) ◽  
pp. 479-494 ◽  
Author(s):  
A. Mehditabar ◽  
G. H. Rahimi ◽  
S. Ansari Sadrabadi


2016 ◽  
Vol 27 (20) ◽  
pp. 2774-2794 ◽  
Author(s):  
Satyajit Panda

For improved flexibility and conformability of piezoelectric fiber–reinforced composite actuator, it is reconstructed in a recent study by the use of short piezoelectric fibers (short piezoelectric fiber–reinforced composite) instead of continuous fibers (continuous piezoelectric fiber–reinforced composite). This modification facilitates its application in short piezoelectric fiber–reinforced composite layer form instead of continuous piezoelectric fiber–reinforced composite patch form particularly in case of host structures with highly curved boundary surfaces. But the corresponding change in actuation capability is a major issue for potential application of short piezoelectric fiber–reinforced composite that is studied in this work through the control of vibration of a functionally graded circular cylindrical shell under thermal environment. First, an arrangement of continuous piezoelectric fiber–reinforced composite actuator patches over the host shell surface is presented with an objective of controlling all modes of vibration. Next, the use of short piezoelectric fiber–reinforced composite actuator layer for similar control activity is demonstrated through an arrangement of electrode patches over its surfaces. Subsequently, an electric potential function is assumed for the consideration of electrode patches and a geometrically nonlinear coupled thermo-electro-mechanical incremental finite element model of the harmonically excited overall functionally graded shell is developed. The numerical results reveal actuation capability of short piezoelectric fiber–reinforced composite actuator layer with reference to that of the existing continuous piezoelectric fiber–reinforced composite/monolithic piezoelectric actuator patches. The effects of temperature, size of electrode patches, properties of piezoelectric fiber–reinforced composite, and functionally graded properties on the control activity of short piezoelectric fiber–reinforced composite/continuous piezoelectric fiber–reinforced composite actuator are also presented.





Author(s):  
Yukinori Kobayashi ◽  
Kotaro Ishiguri ◽  
Takahiro Tomioka ◽  
Yohei Hoshino

Railway carbody is modeled as a non-circular cylindrical shell with simply-supported ends in this paper. The shell model doesn’t have end plates of the carbody and other equipments attached to actual carbody are neglected. We have applied the transfer matrix method (TMM) to the analysis of three-dimensional elastic vibration problems on the carbody. We also made a 1/12 size carbody model for experimental studies to verify the validity of the numerical simulation. The model has end plates and was placed on soft sponge at both ends of the model to emulate the freely-support. The modal analysis was applied to the experimental model, and natural frequencies and mode shapes of vibration were measured. Comparing the results by TMM and the experiment, natural frequencies and mode shapes of vibration for lower modes show good agreement each other in spite of differences of boundary conditions.



Sign in / Sign up

Export Citation Format

Share Document