Effect of porosity on active vibration control of smart structure using porous functionally graded piezoelectric material

2021 ◽  
pp. 114815
Author(s):  
Anshul Sharma
2019 ◽  
Vol 30 (14) ◽  
pp. 2065-2078 ◽  
Author(s):  
Jonas Maruani ◽  
Isabelle Bruant ◽  
Frédéric Pablo ◽  
Laurent Gallimard

In this article, the active vibration control of a smart structure made out of a single functionally graded piezoelectric material layer, equipped with a network of discrete electrodes, is studied. The material properties vary continuously across the direction of thickness, so that top and bottom surfaces consist of pure PZT4 and the mid surface is composed of pure aluminium. The percolation phenomenon is taken into account. A functionally graded piezoelectric material plate finite element based on the first-order shear deformation theory hypothesis and layer-wise approximation for electric potential is implemented. An optimization procedure is considered to define the relevant electrodes for actuators and sensors, based on controllable and observable criteria. An adaptative fuzzy controller system is used, activating with relevance the actuators according to the most excited eigenmodes. Simulations show the effectiveness of this kind of concept.


2020 ◽  
Vol 31 (10) ◽  
pp. 1298-1313
Author(s):  
Saurav Sharma ◽  
Anuruddh Kumar ◽  
Rajeev Kumar ◽  
Mohammad Talha ◽  
Rahul Vaish

In this article, active vibration control of a piezo laminated smart structure is presented using poling tuned piezoelectric material. To improve the performance of existing materials and utilize the actuation potential of different modes of operation ( d31, d33, and d15), simultaneously, the poling direction of the piezoelectric materials is altered and an optimum poling direction is found. Poling tuned piezoelectric patches at the top and bottom layers of the structure are mounted which act as sensors and actuators, respectively. The computational technique used for calculating the time history of the structure is a finite element method. A fuzzy logic controller is developed to compute the appropriate actuator signal as output while taking sensor voltage and its derivative as input. The controlled response due to this fuzzy logic controller is calculated for different piezoelectric materials under consideration and the performance of these materials in active vibration control is compared. Influence of poling angle on the controlled response of the structure is scrutinized and is found to vary from material to material. A large enhancement due to poling tuning is seen in the properties of Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-0.35PT), whereas other materials show very less improvement or even decay in the properties.


Author(s):  
Vibhuti B Pandey ◽  
Sandeep K Parashar

This paper investigates the static bending and free vibration analysis of functionally graded piezoelectric material beam under electromechanical loading. The effective material properties of functionally graded piezoelectric material beam are assumed to vary continuously through the thickness direction and are graded according to sigmoid law distribution. Both multi-layered and monomorph models have been considered in the present work. A two-dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. The accuracy of the method was validated by comparing the results with the previous published work. The results presented in the paper shall be useful in the design of functionally graded piezoelectric material beam.


2018 ◽  
Vol 29 (18) ◽  
pp. 3582-3597 ◽  
Author(s):  
Manoj Kumar Singh ◽  
Sanjeev A Sahu ◽  
Abhinav Singhal ◽  
Soniya Chaudhary

In mathematical physics, the Wentzel–Kramers–Brillouin approximation or Wentzel–Kramers–Brillouin method is a technique for finding approximate solutions to linear differential equations with spatially varying coefficients. An attempt has been made to approximate the velocity of surface seismic wave in a piezo-composite structure. In particular, this article studies the dispersion behaviour of Love-type seismic waves in functionally graded piezoelectric material layer bonded between initially stressed piezoelectric layer and pre-stressed piezoelectric half-space. In functionally graded piezoelectric material stratum, theoretical derivations are obtained by the Wentzel–Kramers–Brillouin method where variations in material gradient are taken exponentially. In the upper layer and lower half-space, the displacement components are obtained by employing separation of variables method. Dispersion equations are obtained for both electrically open and short cases. Numerical example and graphical manifestation have been provided to illustrate the effect of influencing parameters on the phase velocity of considered surface wave. Obtained relation has been deduced to some existing results, as particular case of this study. Variation in cut-off frequency and group velocity against the wave number are shown graphically. This study provides a theoretical basis and practical utilization for the development and construction of surface acoustics wave devices.


Sign in / Sign up

Export Citation Format

Share Document