Active vibration control of smart structure using poling tuned piezoelectric material

2020 ◽  
Vol 31 (10) ◽  
pp. 1298-1313
Author(s):  
Saurav Sharma ◽  
Anuruddh Kumar ◽  
Rajeev Kumar ◽  
Mohammad Talha ◽  
Rahul Vaish

In this article, active vibration control of a piezo laminated smart structure is presented using poling tuned piezoelectric material. To improve the performance of existing materials and utilize the actuation potential of different modes of operation ( d31, d33, and d15), simultaneously, the poling direction of the piezoelectric materials is altered and an optimum poling direction is found. Poling tuned piezoelectric patches at the top and bottom layers of the structure are mounted which act as sensors and actuators, respectively. The computational technique used for calculating the time history of the structure is a finite element method. A fuzzy logic controller is developed to compute the appropriate actuator signal as output while taking sensor voltage and its derivative as input. The controlled response due to this fuzzy logic controller is calculated for different piezoelectric materials under consideration and the performance of these materials in active vibration control is compared. Influence of poling angle on the controlled response of the structure is scrutinized and is found to vary from material to material. A large enhancement due to poling tuning is seen in the properties of Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-0.35PT), whereas other materials show very less improvement or even decay in the properties.

Author(s):  
Hua Li ◽  
Kaiming Hu

Cylindrical shells are widely used engineering structures, such as pipelines, tubes, submarine shells, etc. The active vibration control of these structures are important methods for ensuring their performance. In this paper, a fuzzy logic controller was proposed for the active vibration control of cylindrical shells. Piezoelectric actuators were laminated on the shell surface for the generation of control force. Then, the mathematical model of the model control force were given based the inverse piezoelectric effects and modal summation method. The transfer equation of the controlled system was derived from the modal equation. The fuzzy logic controller was then designed, in which the centroid method was used for defuzification. The proposed controller was then implemented in Matlab/Simulink environment, followed by case studies to evaluate its performance. Numerical results shown the effectiveness of fuzzy logic controller on active vibration of smart cylindrical shells. For all evaluated cases, more than 33% of amplitude reduction were achieved.


Author(s):  
Manu Sharma ◽  
S. P. Singh ◽  
B. L. Sachdeva

This paper presents fuzzy logic based velocity feedback control for active vibration control of beams. The controller is first developed for a single degree of freedom spring mass system. Rule base consisting of three simple rules based on velocity is used. It is found theoretically as well as experimentally, that for the same settling time maximum applied force required by fuzzy logic controller is much less than that required by direct negative velocity feedback control. The fuzzy controller so developed is then applied for active vibration control of beams. The controller is implemented experimentally on a test beam and the results are found satisfactory. The test system consists of a cantilevered beam with piezoelectric sensor and actuator patches mounted in collocated fashion. The fuzzy logic controller is based on modal velocity of the beam. Modal velocity of the beam acts as an input to the fuzzy controller and actuation force is output from the inference engine. The issues related to design of fuzzy logic controller based on velocity are discussed.


2010 ◽  
Vol 139-141 ◽  
pp. 2336-2339
Author(s):  
Lei Zhang ◽  
Dong Wei Li ◽  
Zhi Jun Mao

A kind of adaptive searching optimization active vibration control system of smart structure with piezoelectric materials was put forward, and the smart flexible cantilever structure was analyzed, the active vibration control system was realized in the lab. The result proved the methods’ feasibility and practicability.


2014 ◽  
Vol 598 ◽  
pp. 529-533
Author(s):  
Erdi Gülbahçe ◽  
Mehmet Çelik ◽  
Mustafa Tinkir

The main purpose of this study is to prepare mathematical model for active vibration control of a structure. This paper presents the numerical and experimental modal analysis of aluminum cantilever beam in order to investigate the dynamic characteristics of the structure. The results will be used for active vibration control of structure’s experimental setup. Experimental natural frequencies are obtained and compared to verify the proposed numerical model by using modal analysis results. MATLAB System Identification Toolbox and ANSYS harmonic response function are used together to estimate beam’s equations of motion which include its amplitude, frequency and phase angle values. Moreover, the mathematical model of beam is simulated in MATLAB/Simulink software to determine the dynamic behavior of the proposed system. Furthermore, another prediction model approach with multiple input and single output is used to find the realistic behavior of beam via an adaptive neural-network-based fuzzy logic inference system, in addition, impulse responses of the proposed models are compared and the control block diagram for active vibration control is implemented. As a first iteration, PID type controller is designed to suppress vibrations against the disturbance input. The results of modal analysis, the prediction models, controlled and uncontrolled system responses are presented in graphics and tables for obtaining a sample numerical active vibration control.


Sign in / Sign up

Export Citation Format

Share Document