Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate

2014 ◽  
Vol 50 ◽  
pp. 246-256 ◽  
Author(s):  
Malkit Singh ◽  
Rafat Siddique
Author(s):  
H. Mohammed

The effect of coal bottom ash (CBA) on the characteristics of asphaltic concrete was investigated with a view to assess its suitability as a partial replacement of fine aggregate. Coal procured from Lafia-Obi coal mines was burnt in a fixed bed combustor until a sand size residual was produced. The properties of the materials used for the study were characterize using standard procedures. The CBA was introduced in the asphalt mix at an increasing rate of 10, 15, 20 and 25% content by weight of the fine aggregate and test samples of asphaltic concrete were prepared. The samples were subjected to Marshall stability test. Results showed that the specific gravity and absorption test for granite dust were 2.45 and 0.25%, respectively, while those of the CBA were 2.86 and 0.58% respectively. The result of stability, flow, bulk density, voids filled in bitumen (VFB), air voids (VA) and voids in mineral aggregate (VMA) of the asphaltic concrete at 0% CBA were 12.02 kN, 3.04 mm, 2.491g/cm3, 66.0%, 4.3%, 12.7% respectively; while the values at 20% CBA content were 16.97 kN, 3.51mm, 2.514g/ cm3 , 71.2%, 3.4%, 11.9% respectively. The result showed that coal bottom ash in asphaltic mix improved its properties.


2015 ◽  
Vol 12 (2) ◽  
Author(s):  
Roza Gusman

Penggunaan Abu Dasar Batubara Sebagai Pengganti Sebagian Agregat Halus pada Campuran Latasir B Terhadap Karakteristik MarshallBasic Use of Coal Ash to Replace Some Fine Aggregate on Characteristics of Mixed Latasir B MarshallRoza Gusman1 & Alik Ansyori21,2Jurusan Teknik Sipil Fakultas Teknik – Universitas Muhammadiyah MalangAlamat korespondensi : Jalan Raya Tlogomas 246 Malang 65144AbstractCoal bottom ash is the residue from the burning of coal in thermal power plants. The use of coal bottom ash as an alternative material mix pavement is one way to take advantage of these residues. This study aimed to determine the effect of the use and the quantity of coal bottom ash as partial replacement of fine aggregate characteristics that meet the requirements for mixed marshall latasir B. Partial replacement of fine aggregate with coal bottom ash is made with a variation of 5%, 10%, 15%, 20%, 25%, 30%, and 35% of the total proportion of fine aggregate. Results of the study note that the use of coal bottom ash generally improves the quality mix latasir B. Latasir mixture B which has the characteristics of the best marshal is on the basis of coal ash content of 17.2%.Keywords: latasir B asphalt mixtures, coal bottom ash, marshall characteristics. AbstrakBottom ash batubara adalah residu dari pembakaran batubara di pembangkit listrik termal . Penggunaan batubara bawah abu sebagai alternatif campuran bahan perkerasan adalah salah satu cara untuk mengambil keuntungan dari residu tersebut . Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan dan kuantitas bawah abu batubara sebagai pengganti parsial karakteristik agregat halus yang memenuhi persyaratan untuk campuran marshall latasir B. pengganti parsial agregat halus dengan bottom ash batubara dibuat dengan variasi 5 % , 10 % , 15 % , 20 % , 25 % , 30 % , dan 35 % dari total proporsi agregat halus . Hasil penelitian mencatat bahwa penggunaan bottom ash batubara umumnya meningkatkan kualitas campuran latasir B. Latasir campuran B yang memiliki karakteristik marshal terbaik adalah berdasarkan kadar abu batubara dari 17,2 % .Kata kunci : campuran aspal B latasir , bawah batubara abu , karakteristik marshall .


2019 ◽  
Vol 1 (6) ◽  
pp. 346-352
Author(s):  
Easwaran P ◽  
Kalaivani M ◽  
Ramesh S ◽  
Ranjith R

The management of solid industrial waste is of big global concern nowadays. The majority of industries are not interested in the treatment and safe disposal of industrial waste due to its high cost involvements, causing environmental and other ecological impacts. The disposal of waste foundry sand is of prime importance due to the big volume produced from the metal casting industries all over the world as well as the waste bottom ash produced from the thermal power plant. The possibility of substituting natural fine aggregate with industrial by-products such as bottom ash and foundry sand offers technical, economic and environmental advantages which are of greater importance in the present context of sustainability in construction sector. Concrete is the most important engineering material and the addition of some other material may change the properties of concrete. Studies have been carried out to investigate the possibility of utilizing the board range of material as partial replacement material for cement and aggregate in the production of concrete. Natural fine aggregate are becoming scarcity because of its huge utility in various constitution process the possibility of substituting natural fine aggregate with industrial by product such as waste foundry sand and bottom ash in concrete. This study investigate the effect of waste of bottom ash and foundry sand is equal quantities as partial replacement of fine aggregate in 0%, 20%, 30%, 40% on concrete properties such as compression strength and split tensile strength. This study also aims to encourage industries to start commercial production of concrete products using waste bottom ash and foundry sand.


2021 ◽  
Author(s):  
Manthar Ali Keerio ◽  
Abdullah Saand ◽  
Aneel Kumar ◽  
Naraindas Bheel ◽  
Karm Ali

Abstract The carbon dioxide emissions from Portland cement production have increased significantly and Portland cement is the main binder used in self-compacting concrete, so there is an urgent need to find environmental friendly materials as alternative resources. In most developing countries, the availability of huge amounts of agricultural waste has paved the way for studying how these materials can be processed into self-compacting concrete as binder and aggregates compositions. Therefore, this experimental program was carried out to study the properties of self-compacting concrete (SCC) made with local metakaolin, coal bottom ash separately and combined. Total 25 mixes were prepared with four mixes as 5,10, 15 and 20% replacement of cement with metakaolin, four mixes as 10, 20, 30 and 40% of coal bottom ash as partial replacement of fine aggregates separately and 16 mixes prepared combined with metakaolin and coal bottom ash. The fresh properties were explored by slump flow, T50 flow, V-funnel, L-box, J-Ring sieve segregation test. Moreover, the hardened properties of concrete were performed for compressive, splitting tensile and flexural strength and permeability of SCC mixtures. Fresh concrete test results show that even if no viscosity modifier is required, satisfactory fresh concrete properties of SCC can be obtained by replacing the fine aggregate with coal bottom ash content. At 15% replacement of cement with local metakaolin is optimum and gave better results as compared to control SCC. At 30% replacement of fine aggregate is optimum and gave better results as compared to control SCC. In the combined mix 10% replacement of cement with metakaolin combined with 30% replacement of fine aggregate with coal bottom ash is optimum and gave better results as compared to control SCC.


2015 ◽  
Vol 773-774 ◽  
pp. 916-922 ◽  
Author(s):  
Norul Ernida Zainal Abidin ◽  
Mohd Haziman Wan Ibrahim ◽  
Norwati Jamaluddin ◽  
Kartini Kamaruddin ◽  
Ahmad Farhan Hamzah

Self-compacting concrete which commonly abbrevited as SCC is a special concrete that have the ability to consilodate fully under its own self-weight without any internal or external vibration. This paper presents the experimental investigation carried out to study the strength of self-compacting concrete incorporating bottom ash at different replacement level of natural sand. The composite cement was used and the replacement level of bottom ash to natural sand is set up to 30% by volume. The strength properties such as compressive strength, split tensile strength and flexural strength of the concrete at the age of 7 and 28 days of curing day were conducted. Results shows that the strength of the concrete with bottom ash increased up to replacement level 15% higher than control specimens. This show that bottom ash can be used as supplimentary cementitious materials, having the pozzolanic reactivty.


Sign in / Sign up

Export Citation Format

Share Document