Experimental investigation on using Cement Kiln Dust (CKD) as a cement replacement material in producing modified cement mortar

2014 ◽  
Vol 55 ◽  
pp. 5-12 ◽  
Author(s):  
Khalid B. Najim ◽  
Zaher S. Mahmod ◽  
Abdul-Khaliq M. Atea
2021 ◽  
Vol 877 (1) ◽  
pp. 012049
Author(s):  
Ali Abdulridha ◽  
Saif S. AlQuzweeni ◽  
Rasha S. AlKizwini ◽  
Zahra A. Saleh ◽  
K. S. Hashem

Abstract Various experimental studies have highlighted the negative consequences of Portland cement on health and the environment, such as toxic emissions and alkaline sewage. The development of environmentally acceptable substitutes for cement is thus one of the objectives of current investigations. The proposed environmental alternatives to cement, nevertheless, might have detrimental impacts on the concrete’s characteristics. This investigation intends to study the suitability as alternatives to cement in cement mortar, using industrial wastes like silica fume and cement kiln dust. As a replacement for cement, the cement mortars developed in this research continue from 0% to 60% silica fume and cement kiln dust. Ultrasonic pulse velocity tests at 1 to 4 weeks of age were conducted on hardened specimens. The findings showed that a low reduction in the pulse velocity resulted from high proportions of silica fume and cement kiln dust replacements, whereas an improvement in the characteristics of the mortars with low replacement ratios. Using low kiln dust and silica fume of 20 to 40%, the durability of mortars may increase.


2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Ibrahim Saad Agwa ◽  
Omar Mohamed Omar Ibrahim

There are many wastes form the cement industry among them cement kiln dust (CKD). This residue is obtained after the process of burning the raw materials of cement in the rotary kiln where it is suctioned by fans during the clinker exit of the rotary kiln. Cement dust is a major environmental and economic problem in terms of high quality air pollution ranging from (20-100) microns and the proportions of chlorides, sulphates, alkali and lime living in a way that threatens the general health of human, as well as water pollution if the waste is discharged by rivers and waterways. This investigation’s main objective is to present the potential of using CKD as a cement replacement in self-compacting concrete (SCC). Eight mixes incorporating CKD with partial cement replacement of 0%, 5%, 10%, 20%, 30%, 40%, 50% and 75% in addition to control mix were investigated. The properties of all mixture were determined. Based on the experimental program results, it was found that SCC mixture incorporating 5% to 10% of CKD was almost similar to that of control mixture. The workability of SCC concrete decreased as CKD replacement increased. This established benefits of substituting cement by CKD to make SCC.


2020 ◽  
Vol 38 (6A) ◽  
pp. 879-886
Author(s):  
Ahmed S. Kadhim ◽  
Alaa A. Atiyah ◽  
Shakir A. Salih

This paper aims to investigate the influence of utilization micro cement kiln dust as a sustainable materials additive in order to reduce the voids and micro cracks in the cementitious mortar materials which cause a drastic reduction in the load carrying capacity of the element. Its therefore very important to decrease the pores and enhance the mechanical strength of the cementitious composite materials. In this article, the properties of self-compacting mortar containing micro cement dust additive was experimentally assessed. Micro cement dust powder was added to the self-compacting mortar in (1, 2, 3, 4 and 5 %) percentage by weight of cement to be used as cementitious sustainable materials. The experimental results indicated that the modification and enhancement of the workability of fresh mixture and the mechanical strengths of self-compacting mortar were increased as micro cement dust additives increases. Also; the water absorption and total porosity were decreased with increases of micro cement dust powder.


Sign in / Sign up

Export Citation Format

Share Document