Mechanical properties and stress–strain relationship in axial compression for concrete with added glazed hollow beads and construction waste

2014 ◽  
Vol 71 ◽  
pp. 425-434 ◽  
Author(s):  
Wenjing Wang ◽  
Lin Zhao ◽  
Yuanzhen Liu ◽  
Zhu Li
Author(s):  
Zengle Li ◽  
Bin Zhi ◽  
Enlong Liu

In response to the major challenges faced by China’s transition to green low-carbon energy under the dual-carbon goal, the use of energy Internet cross-boundary thinking will help to develop research on the integration of renewable clean energy and buildings. Energy piles are a new building-energy-saving technology that uses geothermal energy in the shallow soil of the Earth’s surface as a source of cold (heat) to achieve heating in winter and cooling in summer. It is a complex thermomechanical working process that changes the temperature of the rock and soil around the pile, and the temperature change significantly influences the mechanical properties of natural loess. Although the soil temperature can be easily and quickly obtained by using sensors connected to the Internet of Things, the mechanical properties of natural loess will change greatly under the influence of temperature. To explore the influence of temperature on the stress–strain relationship of structural loess, the undrained triaxial consolidation tests were carried out under different temperatures (5, 20, 50 and 70∘C) and different confining pressures (50, 100, 200 and 400[Formula: see text]kPa), and a binary-medium model was introduced to simulate the stress–strain relationship. By introducing the damage rate under temperature change conditions, a binary-medium model of structural loess under variable temperature conditions was established, and the calculation method of the model parameters was proposed. Finally, the calculated results were compared with the test results. The calculation results showed that the established model has good applicability.


2011 ◽  
Vol 25 (5) ◽  
pp. 2335-2342 ◽  
Author(s):  
González-Fonteboa Belén ◽  
Martínez-Abella Fernando ◽  
Carro López Diego ◽  
Seara-Paz Sindy

2020 ◽  
Vol 194 ◽  
pp. 05024
Author(s):  
Yanan Tang ◽  
Weidong Song ◽  
Jianxin Fu

The mechanical properties and stress-strain relationship of cemented backfills with different stratified structure have a direct effect on the mining-filling cycle and the mining of adjacent pillars. To obtain the stress-strain evolution curves, the uniaxial compressive strength tests were performed on backfills with stratified numbers of 0, 1, 2 and 3. The deformation of stratified backfill under the compressive load is regarded as a compound of closed deformation of the macroscopic stratified structure and elastic deformation of material. The damage constitutive model of cemented backfills with different stratified structure are established by considering the influence of compacted section. Comparative analysis reveals that the calculated curve based on the established sectional damage constitutive model conforms well to the trial curve. The maximum closed strain of the structural plane has a more significant effect on the mechanical properties of backfill. In the Weibull distribution, with the increase of the parameter m, the peak strength of backfill gradually increases and then reaches to a certain value, and the stress-strain curve gradually becomes steeper, which shows that m is a reflection of the concentration level of micro-unit strength distribution in the backfill..


Author(s):  
Baylasan Mohamad ◽  
Soleman Alamoudi ◽  
Abd alrahman Issa

Mechanical properties of concrete are highly dependent on the local materials used in its preparation. experiments on ready mix concrete in our region illustrate the actual behavior of concrete produced by local materials. Six standard cylinders (D=150mm, H=300mm) were casted of most ready mix concrete in central area in Syria (13 of them) covering a wide range of compressive strength . Tests were carried out using a testing machine which gives the applied force values and the corresponding displacement simultaneously until failure. The mean curves representing the (stress-strain) relationship of concrete in compression are drawn, from which the mechanical properties of each mixture were derived, such modulus of elasticity compressive strength ,  and the corresponding strain . Artificial neural networks were trained on experimental test results (using MATLAB). The laws of concrete behaviour were well assimilated by Artificial neural networks, which is possible to be used as an alternative method of available models of stress-strain relationship, by predicting the curve directly for various concrete mixtures prepared using local materials with different mixing ratios, or a complementary method through the adoption of an appropriate mathematical model and then predict its parameters ( ، ، ). ANNs proved their ability to predict mechanical properties of concrete better than linear regression equations, which promises a more accurate and comprehensive prediction.


2022 ◽  
Author(s):  
A. Boikov

Abstract. Design features of a flange connection with a seal made of an alloy with shape memory and the most commonly used methods of researching of the stress-strain state of such connections are estimated. Alternative approach for stress-strain state analysis is proposed, it is based on modeling of the contact zone of the sealing surfaces by means of an equivalent gap between the layers, the value of which changes during axial compression of the multilayer ring and goes into tension. Formulas for determining of contact stresses at the border of layers, which take into consideration the variable physical and mechanical properties of the materials of each layer are presented.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6206
Author(s):  
Qian Guo ◽  
Wenbin Li ◽  
Wenjin Yao ◽  
Xiaoming Wang ◽  
Changqiang Huang

In this work, quasistatic mechanical compression experiments were used to study the stress–strain relationship of aluminum foam, and the mechanism of the compressive deformation of aluminum foam under quasistatic compression conditions is discussed based on the experimental observations. Since the interactions among cells of the aluminum foam and differences in compressive strength among cells substantially impacted the mechanical properties of the material, the cellular structural parameters, namely the cell size and cell wall thickness, were defined. Along with the mechanism of deformation of a single cell, the influence of structural parameters on the micro failure mechanism and the stress–strain relationship of the aluminum foam material was analyzed. In combination with the factors influencing the mechanical properties of the aluminum foam, a mechanical constitutive model of aluminum foam suitable for multi-density and multi-impact environments that considers cellular structure density was established to predict the complete stress–strain relationship of aluminum foam under a high strain rate. The coupling function of strain rate and temperature in the original model was verified and the parameters were determined by the compression experiments under different strain rates and different temperatures.


Sign in / Sign up

Export Citation Format

Share Document