Experimental investigation on freeze–thaw durability of Portland cement pervious concrete (PCPC)

2016 ◽  
Vol 117 ◽  
pp. 63-71 ◽  
Author(s):  
Hao Wu ◽  
Zhuo Liu ◽  
Beibei Sun ◽  
Jian Yin
2018 ◽  
Vol 11 (1) ◽  
pp. 176 ◽  
Author(s):  
Hanbing Liu ◽  
Guobao Luo ◽  
Longhui Wang ◽  
Yafeng Gong

Pervious concretes, as sustainable pavement materials, have great advantages in addressing a number of environmental issues. Fly ash, as the industrial by-product waste, is the most commonly used as cement substitute in concrete. The objective of this paper is to study the effects of waste fly ash on properties of pervious concrete. Fly ash was used to replace cement with equivalent volume method at different levels (3%, 6%, 9%, and 12%). The control pervious concrete and fly ash modified pervious concrete were prepared in the laboratory. The porosity, permeability, compressive strength, flexural strength, and freeze–thaw resistance of all mixtures were tested. The results indicated that the addition of fly ash decreased the early-age (28 d) compressive strength and flexural strength, but the long-term (150 d) compressive strength and flexural strength of fly ash modified pervious concrete were higher than that of the early-age. The adverse effect of fly ash on freeze–thaw resistance of pervious concrete was observed when the fly ash was added. The porosity and permeability of all pervious concrete mixtures changed little with the content of fly ash due to the use of equal volume replacement method. Although fly ash is not positive to the properties of pervious concrete, it is still feasible to apply fly ash as a substitute for cement in pervious concrete.


2018 ◽  
Vol 8 (10) ◽  
pp. 1843 ◽  
Author(s):  
Hanbing Liu ◽  
Guobao Luo ◽  
Yafeng Gong ◽  
Haibin Wei

Due to the negative effects that derive from large impervious surfaces in urban areas, pervious concrete has been developed, and has become an environmentally friendly pavement material. As a porous and permeable material, pervious concrete presents an overwhelming advantage in solving urban problems, such as flooding, groundwater decline, urban heat island phenomena, etc. Waste crumb rubber has been verified as a feasible modifier for pavement material. The objective of this paper is to explore the effects of rubber particle size and incorporation level on the permeability, mechanical properties, and freeze–thaw resistance of pervious concrete. Two kinds of rubbers (fine and coarse) with four incorporation levels (2%, 4%, 6%, and 8%) are used in the experiment. Permeability, compressive strength, flexural strength, flexural strain, and freeze–thaw resistance are tested. The results indicate that the addition of rubber slightly decreases strength and permeability, but significantly enhances ductility and freeze-thaw resistance. Fine crumb rubber with a suitable incorporation level could remarkably improve the ductility and freeze–thaw resistance of pervious concrete without sacrificing excessively strength and permeability.


Sign in / Sign up

Export Citation Format

Share Document